急性跑步机运动诱导雄性大鼠骨骼肌线粒体未折叠蛋白反应。

IF 3.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et Biophysica Acta-Bioenergetics Pub Date : 2024-12-13 DOI:10.1016/j.bbabio.2024.149532
Ibrahim Turkel, Gokhan Burcin Kubat, Tugba Fatsa, Ozgu Acet, Berkay Ozerklig, Burak Yazgan, Gulcin Simsek, Keshav K Singh, Sukran Nazan Kosar
{"title":"急性跑步机运动诱导雄性大鼠骨骼肌线粒体未折叠蛋白反应。","authors":"Ibrahim Turkel, Gokhan Burcin Kubat, Tugba Fatsa, Ozgu Acet, Berkay Ozerklig, Burak Yazgan, Gulcin Simsek, Keshav K Singh, Sukran Nazan Kosar","doi":"10.1016/j.bbabio.2024.149532","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are often referred to as the energy centers of the cell and are recognized as key players in signal transduction, sensing, and responding to internal and external stimuli. Under stress conditions, the mitochondrial unfolded protein response (UPR<sup>mt</sup>), a conserved mitochondrial quality control mechanism, is activated to maintain mitochondrial and cellular homeostasis. As a physiological stimulus, exercise-induced mitochondrial perturbations trigger UPR<sup>mt</sup>, coordinating mitochondria-to-nucleus communication and initiating a transcriptional program to restore mitochondrial function. The aim of this study was to evaluate the UPR<sup>mt</sup> signaling response to acute exercise in skeletal muscle. Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min on a 0 % grade. Plantaris muscles were collected from both sedentary and exercise groups at various times: immediately (0), and at 1, 3, 6, 12, and 24 h post-exercise. Reactive oxygen species (ROS) production was assessed using hydrogen peroxide assay and dihydroethidium staining. Additionally, the mRNA and protein expression of UPR<sup>mt</sup> markers were measured using ELISA and real-time PCR. Mitochondrial activity was assessed using succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) staining. Our results demonstrated that acute exercise increased ROS production and upregulated UPR<sup>mt</sup> markers at both gene and protein levels. Moreover, skeletal muscle exhibited an increase in mitochondrial activity in response to exercise, as indicated by SDH and COX staining. These findings suggest that acute treadmill exercise is sufficient to induce ROS production, activate UPR<sup>mt</sup> signaling, and enhance mitochondrial activity in skeletal muscle, expanding our understanding of mitochondrial adaptations to exercise.</p>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":" ","pages":"149532"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute treadmill exercise induces mitochondrial unfolded protein response in skeletal muscle of male rats.\",\"authors\":\"Ibrahim Turkel, Gokhan Burcin Kubat, Tugba Fatsa, Ozgu Acet, Berkay Ozerklig, Burak Yazgan, Gulcin Simsek, Keshav K Singh, Sukran Nazan Kosar\",\"doi\":\"10.1016/j.bbabio.2024.149532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are often referred to as the energy centers of the cell and are recognized as key players in signal transduction, sensing, and responding to internal and external stimuli. Under stress conditions, the mitochondrial unfolded protein response (UPR<sup>mt</sup>), a conserved mitochondrial quality control mechanism, is activated to maintain mitochondrial and cellular homeostasis. As a physiological stimulus, exercise-induced mitochondrial perturbations trigger UPR<sup>mt</sup>, coordinating mitochondria-to-nucleus communication and initiating a transcriptional program to restore mitochondrial function. The aim of this study was to evaluate the UPR<sup>mt</sup> signaling response to acute exercise in skeletal muscle. Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min on a 0 % grade. Plantaris muscles were collected from both sedentary and exercise groups at various times: immediately (0), and at 1, 3, 6, 12, and 24 h post-exercise. Reactive oxygen species (ROS) production was assessed using hydrogen peroxide assay and dihydroethidium staining. Additionally, the mRNA and protein expression of UPR<sup>mt</sup> markers were measured using ELISA and real-time PCR. Mitochondrial activity was assessed using succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) staining. Our results demonstrated that acute exercise increased ROS production and upregulated UPR<sup>mt</sup> markers at both gene and protein levels. Moreover, skeletal muscle exhibited an increase in mitochondrial activity in response to exercise, as indicated by SDH and COX staining. These findings suggest that acute treadmill exercise is sufficient to induce ROS production, activate UPR<sup>mt</sup> signaling, and enhance mitochondrial activity in skeletal muscle, expanding our understanding of mitochondrial adaptations to exercise.</p>\",\"PeriodicalId\":50731,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"volume\":\" \",\"pages\":\"149532\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbabio.2024.149532\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbabio.2024.149532","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体通常被称为细胞的能量中心,被认为是信号转导、感知和响应内外刺激的关键角色。在压力条件下,线粒体未折叠蛋白反应(UPRmt)--一种保守的线粒体质量控制机制--会被激活,以维持线粒体和细胞的平衡。作为一种生理刺激,运动诱导的线粒体扰动会触发 UPRmt,协调线粒体与细胞核之间的交流并启动转录程序以恢复线粒体功能。本研究旨在评估骨骼肌对急性运动的 UPRmt 信号反应。雄性大鼠在 0% 的坡度上以 25 米/分钟的速度进行急性跑步机运动 60 分钟。在不同时间收集静坐组和运动组大鼠的足底肌肉:运动后立即(0)、1、3、6、12 和 24 小时。使用过氧化氢测定法和二氢乙锭染色法评估活性氧(ROS)的产生。此外,还使用 ELISA 和实时 PCR 测量了 UPRmt 标记的 mRNA 和蛋白质表达。线粒体活性通过琥珀酸脱氢酶(SDH)和细胞色素c氧化酶(COX)染色进行评估。我们的研究结果表明,急性运动会导致 ROS 生成增加,并在基因和蛋白质水平上上调 UPRmt 标记。此外,SDH 和 COX 染色显示,骨骼肌的线粒体活性在运动后有所增加。这些研究结果表明,急性跑步机运动足以诱导 ROS 生成、激活 UPRmt 信号转导并增强骨骼肌线粒体的活性,从而拓展了我们对线粒体适应运动的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acute treadmill exercise induces mitochondrial unfolded protein response in skeletal muscle of male rats.

Mitochondria are often referred to as the energy centers of the cell and are recognized as key players in signal transduction, sensing, and responding to internal and external stimuli. Under stress conditions, the mitochondrial unfolded protein response (UPRmt), a conserved mitochondrial quality control mechanism, is activated to maintain mitochondrial and cellular homeostasis. As a physiological stimulus, exercise-induced mitochondrial perturbations trigger UPRmt, coordinating mitochondria-to-nucleus communication and initiating a transcriptional program to restore mitochondrial function. The aim of this study was to evaluate the UPRmt signaling response to acute exercise in skeletal muscle. Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min on a 0 % grade. Plantaris muscles were collected from both sedentary and exercise groups at various times: immediately (0), and at 1, 3, 6, 12, and 24 h post-exercise. Reactive oxygen species (ROS) production was assessed using hydrogen peroxide assay and dihydroethidium staining. Additionally, the mRNA and protein expression of UPRmt markers were measured using ELISA and real-time PCR. Mitochondrial activity was assessed using succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) staining. Our results demonstrated that acute exercise increased ROS production and upregulated UPRmt markers at both gene and protein levels. Moreover, skeletal muscle exhibited an increase in mitochondrial activity in response to exercise, as indicated by SDH and COX staining. These findings suggest that acute treadmill exercise is sufficient to induce ROS production, activate UPRmt signaling, and enhance mitochondrial activity in skeletal muscle, expanding our understanding of mitochondrial adaptations to exercise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et Biophysica Acta-Bioenergetics
Biochimica et Biophysica Acta-Bioenergetics 生物-生化与分子生物学
CiteScore
9.50
自引率
7.00%
发文量
363
审稿时长
92 days
期刊介绍: BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.
期刊最新文献
Clinical ischemia-reperfusion injury: Driven by reductive rather than oxidative stress? A narrative review. Commentary: Why do many cell biology papers contain fundamental bioenergetic errors? Purification and characterization of recombinant human mitochondrial proton-pumping nicotinamide nucleotide transhydrogenase. Mutational interference with oligomerization properties of OCP-related apo- and holoproteins studied by analytical ultracentrifugation. ADP-inhibited structure of non-catalytic site-depleted FoF1-ATPase from thermophilic Bacillus sp. PS-3.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1