将数百到数千个神经元尖峰的精细结构与行为联系起来的数学语言。

ArXiv Pub Date : 2025-01-15
Alexandra N Busch, Roberto C Budzinski, Federico W Pasini, Ján Mináč, Jonathan A Michaels, Megan Roussy, Roberto A Gulli, Benjamin W Corrigan, J Andrew Pruszynski, Julio Martinez-Trujillo, Lyle E Muller
{"title":"将数百到数千个神经元尖峰的精细结构与行为联系起来的数学语言。","authors":"Alexandra N Busch, Roberto C Budzinski, Federico W Pasini, Ján Mináč, Jonathan A Michaels, Megan Roussy, Roberto A Gulli, Benjamin W Corrigan, J Andrew Pruszynski, Julio Martinez-Trujillo, Lyle E Muller","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in neural recording technology allow simultaneously recording action potentials from hundreds to thousands of neurons in awake, behaving animals. However, characterizing spike patterns in the resulting data, and linking these patterns to behaviour, remains a challenging task. The lack of a rigorous mathematical language for variable numbers of events (spikes) emitted by multiple agents (neurons) is an important limiting factor. We introduce a new mathematical operation to decompose complex spike patterns into a set of simple, structured elements. This creates a mathematical language that allows comparing spike patterns across trials, detecting sub-patterns, and making links to behaviour via a clear distance measure. We first demonstrate the method using Neuropixel recordings from macaque motor cortex. We then apply the method to dual Utah array recordings from macaque prefrontal cortex, where this technique reveals previously unseen structure that can predict both memory-guided decisions and errors in a virtual-reality working memory task. These results demonstrate that this technique provides a powerful new approach to understand structure in the spike times of neural populations, at a scale that will continue to grow more and more rapidly in upcoming years.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643227/pdf/","citationCount":"0","resultStr":"{\"title\":\"A mathematical language for linking fine-scale structure in spikes from hundreds to thousands of neurons with behaviour.\",\"authors\":\"Alexandra N Busch, Roberto C Budzinski, Federico W Pasini, Ján Mináč, Jonathan A Michaels, Megan Roussy, Roberto A Gulli, Benjamin W Corrigan, J Andrew Pruszynski, Julio Martinez-Trujillo, Lyle E Muller\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in neural recording technology allow simultaneously recording action potentials from hundreds to thousands of neurons in awake, behaving animals. However, characterizing spike patterns in the resulting data, and linking these patterns to behaviour, remains a challenging task. The lack of a rigorous mathematical language for variable numbers of events (spikes) emitted by multiple agents (neurons) is an important limiting factor. We introduce a new mathematical operation to decompose complex spike patterns into a set of simple, structured elements. This creates a mathematical language that allows comparing spike patterns across trials, detecting sub-patterns, and making links to behaviour via a clear distance measure. We first demonstrate the method using Neuropixel recordings from macaque motor cortex. We then apply the method to dual Utah array recordings from macaque prefrontal cortex, where this technique reveals previously unseen structure that can predict both memory-guided decisions and errors in a virtual-reality working memory task. These results demonstrate that this technique provides a powerful new approach to understand structure in the spike times of neural populations, at a scale that will continue to grow more and more rapidly in upcoming years.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经记录技术的最新进展允许同时记录醒着的、有行为的动物的数百到数千个神经元的动作电位。然而,表征结果数据中的峰值模式,并将这些模式与行为联系起来,仍然是一项具有挑战性的任务。对于由多个代理(神经元)发出的可变数量的事件(尖峰)缺乏严格的数学语言是一个重要的限制因素。我们引入了一种新的数学运算,将复杂的尖峰图案分解成一组简单的、结构化的元素。这创造了一种数学语言,可以比较试验中的峰值模式,检测子模式,并通过明确的距离测量与行为联系起来。我们将该方法应用于猕猴前额叶皮层的双犹他阵列记录,该技术揭示了以前看不见的结构,可以预测记忆引导的决策和虚拟现实工作记忆任务中的错误。这些结果表明,该技术提供了一种强大的新方法来理解神经群体尖峰时间的结构,其规模将在未来几年继续快速增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mathematical language for linking fine-scale structure in spikes from hundreds to thousands of neurons with behaviour.

Recent advances in neural recording technology allow simultaneously recording action potentials from hundreds to thousands of neurons in awake, behaving animals. However, characterizing spike patterns in the resulting data, and linking these patterns to behaviour, remains a challenging task. The lack of a rigorous mathematical language for variable numbers of events (spikes) emitted by multiple agents (neurons) is an important limiting factor. We introduce a new mathematical operation to decompose complex spike patterns into a set of simple, structured elements. This creates a mathematical language that allows comparing spike patterns across trials, detecting sub-patterns, and making links to behaviour via a clear distance measure. We first demonstrate the method using Neuropixel recordings from macaque motor cortex. We then apply the method to dual Utah array recordings from macaque prefrontal cortex, where this technique reveals previously unseen structure that can predict both memory-guided decisions and errors in a virtual-reality working memory task. These results demonstrate that this technique provides a powerful new approach to understand structure in the spike times of neural populations, at a scale that will continue to grow more and more rapidly in upcoming years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grade Inflation in Generative Models. A recent evaluation on the performance of LLMs on radiation oncology physics using questions of randomly shuffled options. A Systematic Computational Framework for Practical Identifiability Analysis in Mathematical Models Arising from Biology. Back to the Continuous Attractor. Inferring resource competition in microbial communities from time series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1