开发新的衰老转录组测量方法:转录组死亡率风险年龄(TraMA)。

Eric T Klopack, Gokul Seshadri, Thalida Em Arpawong, Steve Cole, Bharat Thyagarajan, Eileen M Crimmins
{"title":"开发新的衰老转录组测量方法:转录组死亡率风险年龄(TraMA)。","authors":"Eric T Klopack, Gokul Seshadri, Thalida Em Arpawong, Steve Cole, Bharat Thyagarajan, Eileen M Crimmins","doi":"10.1101/2024.12.04.24318517","DOIUrl":null,"url":null,"abstract":"<p><p>Increasingly, research suggests that aging is a coordinated multi-system decline in functioning that occurs at multiple biological levels. We developed and validated a transcriptomic (RNA-based) aging measure we call Transcriptomic Mortality-risk Age (TraMA) using RNA-seq data from the 2016 Health and Retirement Study using elastic net Cox regression analyses to predict 4-year mortality hazard. In a holdout test sample, TraMA was associated with earlier mortality, more chronic conditions, poorer cognitive functioning, and more limitations in activities of daily living. TraMA was also externally validated in the Long Life Family Study and several publicly available datasets. Results suggest that TraMA is a robust, portable RNAseq-based aging measure that is comparable, but independent from past biological aging measures (e.g., GrimAge). TraMA is likely to be of particular value to researchers interested in understanding the biological processes underlying health and aging, and for social, psychological, epidemiological, and demographic studies of health and aging.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a novel transcriptomic measure of aging: Transcriptomic Mortality-risk Age (TraMA).\",\"authors\":\"Eric T Klopack, Gokul Seshadri, Thalida Em Arpawong, Steve Cole, Bharat Thyagarajan, Eileen M Crimmins\",\"doi\":\"10.1101/2024.12.04.24318517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasingly, research suggests that aging is a coordinated multi-system decline in functioning that occurs at multiple biological levels. We developed and validated a transcriptomic (RNA-based) aging measure we call Transcriptomic Mortality-risk Age (TraMA) using RNA-seq data from the 2016 Health and Retirement Study using elastic net Cox regression analyses to predict 4-year mortality hazard. In a holdout test sample, TraMA was associated with earlier mortality, more chronic conditions, poorer cognitive functioning, and more limitations in activities of daily living. TraMA was also externally validated in the Long Life Family Study and several publicly available datasets. Results suggest that TraMA is a robust, portable RNAseq-based aging measure that is comparable, but independent from past biological aging measures (e.g., GrimAge). TraMA is likely to be of particular value to researchers interested in understanding the biological processes underlying health and aging, and for social, psychological, epidemiological, and demographic studies of health and aging.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.12.04.24318517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.04.24318517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a novel transcriptomic measure of aging: Transcriptomic Mortality-risk Age (TraMA).

Increasingly, research suggests that aging is a coordinated multi-system decline in functioning that occurs at multiple biological levels. We developed and validated a transcriptomic (RNA-based) aging measure we call Transcriptomic Mortality-risk Age (TraMA) using RNA-seq data from the 2016 Health and Retirement Study using elastic net Cox regression analyses to predict 4-year mortality hazard. In a holdout test sample, TraMA was associated with earlier mortality, more chronic conditions, poorer cognitive functioning, and more limitations in activities of daily living. TraMA was also externally validated in the Long Life Family Study and several publicly available datasets. Results suggest that TraMA is a robust, portable RNAseq-based aging measure that is comparable, but independent from past biological aging measures (e.g., GrimAge). TraMA is likely to be of particular value to researchers interested in understanding the biological processes underlying health and aging, and for social, psychological, epidemiological, and demographic studies of health and aging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Basic helix-loop-helix transcription factor BHLHE22 monoallelic and biallelic variants cause a neurodevelopmental disorder with agenesis of the corpus callosum, intellectual disability, tone and movement abnormalities. Deep phenotyping obesity using EHR data: Promise, Challenges, and Future Directions. ClimateMind50+ a comprehensive short questionnaire to measure climate change knowledge, worries, preparedness, behaviours, and involvement of adults aged 50 and over. Direct Prosthesis Force Control with Tactile Feedback May Connect with the Internal Model. Effects of commonly used antibiotics on children's developing gut microbiomes and resistomes in peri-urban Lima, Peru.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1