Kexin Huang, Tony Zeng, Soner Koc, Alexandra Pettet, Jingtian Zhou, Mika Jain, Dongbo Sun, Camilo Ruiz, Hongyu Ren, Laurence Howe, Tom G Richardson, Adrian Cortes, Katie Aiello, Kim Branson, Andreas Pfenning, Jesse M Engreitz, Martin Jinye Zhang, Jure Leskovec
{"title":"利用人工智能在海量功能基因组学知识图谱上发现小队列 GWAS。","authors":"Kexin Huang, Tony Zeng, Soner Koc, Alexandra Pettet, Jingtian Zhou, Mika Jain, Dongbo Sun, Camilo Ruiz, Hongyu Ren, Laurence Howe, Tom G Richardson, Adrian Cortes, Katie Aiello, Kim Branson, Andreas Pfenning, Jesse M Engreitz, Martin Jinye Zhang, Jure Leskovec","doi":"10.1101/2024.12.03.24318375","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWASs) have identified tens of thousands of disease associated variants and provided critical insights into developing effective treatments. However, limited sample sizes have hindered the discovery of variants for uncommon and rare diseases. Here, we introduce KGWAS, a novel geometric deep learning method that leverages a massive functional knowledge graph across variants and genes to improve detection power in small-cohort GWASs significantly. KGWAS assesses the strength of a variant's association to disease based on the aggregate GWAS evidence across molecular elements interacting with the variant within the knowledge graph. Comprehensive simulations and replication experiments showed that, for small sample sizes ( <i>N</i> =1-10K), KGWAS identified up to 100% more statistically significant associations than state-of-the-art GWAS methods and achieved the same statistical power with up to 2.67× fewer samples. We applied KGWAS to 554 uncommon UK Biobank diseases ( <i>N</i> <sub>case</sub> <5K) and identified 183 more associations (46.9% improvement) than the original GWAS, where the gain further increases to 79.8% for 141 rare diseases (N <sub>case</sub> <300). The KGWAS-only discoveries are supported by abundant functional evidence, such as rs2155219 (on 11q13) associated with ulcerative colitis potentially via regulating <i>LRRC32</i> expression in CD4+ regulatory T cells, and rs7312765 (on 12q12) associated with the rare disease myasthenia gravis potentially via regulating <i>PPHLN1</i> expression in neuron-related cell types. Furthermore, KGWAS consistently improves downstream analyses such as identifying disease-specific network links for interpreting GWAS variants, identifying disease-associated genes, and identifying disease-relevant cell populations. Overall, KGWAS is a flexible and powerful AI model that integrates growing functional genomics data to discover novel variants, genes, cells, and networks, especially valuable for small cohort diseases.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643201/pdf/","citationCount":"0","resultStr":"{\"title\":\"Small-cohort GWAS discovery with AI over massive functional genomics knowledge graph.\",\"authors\":\"Kexin Huang, Tony Zeng, Soner Koc, Alexandra Pettet, Jingtian Zhou, Mika Jain, Dongbo Sun, Camilo Ruiz, Hongyu Ren, Laurence Howe, Tom G Richardson, Adrian Cortes, Katie Aiello, Kim Branson, Andreas Pfenning, Jesse M Engreitz, Martin Jinye Zhang, Jure Leskovec\",\"doi\":\"10.1101/2024.12.03.24318375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide association studies (GWASs) have identified tens of thousands of disease associated variants and provided critical insights into developing effective treatments. However, limited sample sizes have hindered the discovery of variants for uncommon and rare diseases. Here, we introduce KGWAS, a novel geometric deep learning method that leverages a massive functional knowledge graph across variants and genes to improve detection power in small-cohort GWASs significantly. KGWAS assesses the strength of a variant's association to disease based on the aggregate GWAS evidence across molecular elements interacting with the variant within the knowledge graph. Comprehensive simulations and replication experiments showed that, for small sample sizes ( <i>N</i> =1-10K), KGWAS identified up to 100% more statistically significant associations than state-of-the-art GWAS methods and achieved the same statistical power with up to 2.67× fewer samples. We applied KGWAS to 554 uncommon UK Biobank diseases ( <i>N</i> <sub>case</sub> <5K) and identified 183 more associations (46.9% improvement) than the original GWAS, where the gain further increases to 79.8% for 141 rare diseases (N <sub>case</sub> <300). The KGWAS-only discoveries are supported by abundant functional evidence, such as rs2155219 (on 11q13) associated with ulcerative colitis potentially via regulating <i>LRRC32</i> expression in CD4+ regulatory T cells, and rs7312765 (on 12q12) associated with the rare disease myasthenia gravis potentially via regulating <i>PPHLN1</i> expression in neuron-related cell types. Furthermore, KGWAS consistently improves downstream analyses such as identifying disease-specific network links for interpreting GWAS variants, identifying disease-associated genes, and identifying disease-relevant cell populations. Overall, KGWAS is a flexible and powerful AI model that integrates growing functional genomics data to discover novel variants, genes, cells, and networks, especially valuable for small cohort diseases.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643201/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.12.03.24318375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.03.24318375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Small-cohort GWAS discovery with AI over massive functional genomics knowledge graph.
Genome-wide association studies (GWASs) have identified tens of thousands of disease associated variants and provided critical insights into developing effective treatments. However, limited sample sizes have hindered the discovery of variants for uncommon and rare diseases. Here, we introduce KGWAS, a novel geometric deep learning method that leverages a massive functional knowledge graph across variants and genes to improve detection power in small-cohort GWASs significantly. KGWAS assesses the strength of a variant's association to disease based on the aggregate GWAS evidence across molecular elements interacting with the variant within the knowledge graph. Comprehensive simulations and replication experiments showed that, for small sample sizes ( N =1-10K), KGWAS identified up to 100% more statistically significant associations than state-of-the-art GWAS methods and achieved the same statistical power with up to 2.67× fewer samples. We applied KGWAS to 554 uncommon UK Biobank diseases ( Ncase <5K) and identified 183 more associations (46.9% improvement) than the original GWAS, where the gain further increases to 79.8% for 141 rare diseases (N case <300). The KGWAS-only discoveries are supported by abundant functional evidence, such as rs2155219 (on 11q13) associated with ulcerative colitis potentially via regulating LRRC32 expression in CD4+ regulatory T cells, and rs7312765 (on 12q12) associated with the rare disease myasthenia gravis potentially via regulating PPHLN1 expression in neuron-related cell types. Furthermore, KGWAS consistently improves downstream analyses such as identifying disease-specific network links for interpreting GWAS variants, identifying disease-associated genes, and identifying disease-relevant cell populations. Overall, KGWAS is a flexible and powerful AI model that integrates growing functional genomics data to discover novel variants, genes, cells, and networks, especially valuable for small cohort diseases.