Hsin-Ni Liu, Selena Y Lin, Ricardo Ramirez, Shin-En Chen, Zach Heimer, Roman Kubas, Fwu-Shan Shieh, Elena S Kim, Yuanjie Liu, Daryl T Y Lau, Ting-Tsung Chang, Haitao Guo, Zhili Wang, Ying-Hsiu Su
{"title":"通过 HBV 靶向 NGS 检测法综合评估组织活检中的 DNA 和检测液体活检中的 DNA。","authors":"Hsin-Ni Liu, Selena Y Lin, Ricardo Ramirez, Shin-En Chen, Zach Heimer, Roman Kubas, Fwu-Shan Shieh, Elena S Kim, Yuanjie Liu, Daryl T Y Lau, Ting-Tsung Chang, Haitao Guo, Zhili Wang, Ying-Hsiu Su","doi":"10.1101/2024.12.04.24318256","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>Integrated HBV DNA (iDNA) plays a critical role in HBV pathogenesis, particularly in predicting treatment response and HCC. This study aimed to use an HBV hybridization-capture next-generation sequencing (HBV-NGS) assay to detect HBV-host junction sequences (HBV-JS) in a sensitive nonbiased manner to detect and estimate the iDNA fraction in tissue biopsies and HBV genetics by liquid biopsy.</p><p><strong>Methods: </strong>HBV DNA from plasmid monomers, HBV-HCC cell line (SNU398, Hep3B, and PLC/PRF/5), tissue biopsies of patients with serum HBV DNA <4 log IU/ml, and matched urine and plasma of HBV patients were assessed by HBV-NGS. Junction-specific qPCR (JS-qPCR) assays were developed to quantify abundant HBV-JS.</p><p><strong>Results: </strong>We demonstrated high coverage uniformity, reproducibility across all HBV genotypes A-D, and 0.1% sensitivity for detecting iDNA by the HBV-NGS assay. The sequence and structures of iDNA molecules from SNU398 and Hep3B are reported. An iDNA estimation model was developed using six abundant HBV-JS sequences identified from tissue biopsies by HBV-NGS assay and validated using total DNA of SNU398 and Hep3B cells. Furthermore, the utility of the HBV-NGS assay for HBV genetic analysis in liquid biopsies was explored using matched plasma-urine samples from three patients with serum HBV DNA levels ranging from high to undetectable. HBV-JS was detected in all body fluids tested, regardless of viral load.</p><p><strong>Conclusion: </strong>These findings suggest that the iDNA fraction in tissue biopsies from patients with limited or undetectable serum HBV DNA can be estimated using a robust HBV-NGS assay, and a sensitive HBV genetics liquid biopsy can be obtained. This study highlights the potential of NGS-based methods to advance HBV management.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643158/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated DNA estimation in tissue biopsy and detection in liquid biopsy by HBV-targeted NGS assay.\",\"authors\":\"Hsin-Ni Liu, Selena Y Lin, Ricardo Ramirez, Shin-En Chen, Zach Heimer, Roman Kubas, Fwu-Shan Shieh, Elena S Kim, Yuanjie Liu, Daryl T Y Lau, Ting-Tsung Chang, Haitao Guo, Zhili Wang, Ying-Hsiu Su\",\"doi\":\"10.1101/2024.12.04.24318256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background & aims: </strong>Integrated HBV DNA (iDNA) plays a critical role in HBV pathogenesis, particularly in predicting treatment response and HCC. This study aimed to use an HBV hybridization-capture next-generation sequencing (HBV-NGS) assay to detect HBV-host junction sequences (HBV-JS) in a sensitive nonbiased manner to detect and estimate the iDNA fraction in tissue biopsies and HBV genetics by liquid biopsy.</p><p><strong>Methods: </strong>HBV DNA from plasmid monomers, HBV-HCC cell line (SNU398, Hep3B, and PLC/PRF/5), tissue biopsies of patients with serum HBV DNA <4 log IU/ml, and matched urine and plasma of HBV patients were assessed by HBV-NGS. Junction-specific qPCR (JS-qPCR) assays were developed to quantify abundant HBV-JS.</p><p><strong>Results: </strong>We demonstrated high coverage uniformity, reproducibility across all HBV genotypes A-D, and 0.1% sensitivity for detecting iDNA by the HBV-NGS assay. The sequence and structures of iDNA molecules from SNU398 and Hep3B are reported. An iDNA estimation model was developed using six abundant HBV-JS sequences identified from tissue biopsies by HBV-NGS assay and validated using total DNA of SNU398 and Hep3B cells. Furthermore, the utility of the HBV-NGS assay for HBV genetic analysis in liquid biopsies was explored using matched plasma-urine samples from three patients with serum HBV DNA levels ranging from high to undetectable. HBV-JS was detected in all body fluids tested, regardless of viral load.</p><p><strong>Conclusion: </strong>These findings suggest that the iDNA fraction in tissue biopsies from patients with limited or undetectable serum HBV DNA can be estimated using a robust HBV-NGS assay, and a sensitive HBV genetics liquid biopsy can be obtained. This study highlights the potential of NGS-based methods to advance HBV management.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.12.04.24318256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.04.24318256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated DNA estimation in tissue biopsy and detection in liquid biopsy by HBV-targeted NGS assay.
Background & aims: Integrated HBV DNA (iDNA) plays a critical role in HBV pathogenesis, particularly in predicting treatment response and HCC. This study aimed to use an HBV hybridization-capture next-generation sequencing (HBV-NGS) assay to detect HBV-host junction sequences (HBV-JS) in a sensitive nonbiased manner to detect and estimate the iDNA fraction in tissue biopsies and HBV genetics by liquid biopsy.
Methods: HBV DNA from plasmid monomers, HBV-HCC cell line (SNU398, Hep3B, and PLC/PRF/5), tissue biopsies of patients with serum HBV DNA <4 log IU/ml, and matched urine and plasma of HBV patients were assessed by HBV-NGS. Junction-specific qPCR (JS-qPCR) assays were developed to quantify abundant HBV-JS.
Results: We demonstrated high coverage uniformity, reproducibility across all HBV genotypes A-D, and 0.1% sensitivity for detecting iDNA by the HBV-NGS assay. The sequence and structures of iDNA molecules from SNU398 and Hep3B are reported. An iDNA estimation model was developed using six abundant HBV-JS sequences identified from tissue biopsies by HBV-NGS assay and validated using total DNA of SNU398 and Hep3B cells. Furthermore, the utility of the HBV-NGS assay for HBV genetic analysis in liquid biopsies was explored using matched plasma-urine samples from three patients with serum HBV DNA levels ranging from high to undetectable. HBV-JS was detected in all body fluids tested, regardless of viral load.
Conclusion: These findings suggest that the iDNA fraction in tissue biopsies from patients with limited or undetectable serum HBV DNA can be estimated using a robust HBV-NGS assay, and a sensitive HBV genetics liquid biopsy can be obtained. This study highlights the potential of NGS-based methods to advance HBV management.