利用扩散模型对内在语义进行无监督学习,实现人员再识别

Xuefeng Tao;Jun Kong;Min Jiang;Ming Lu;Ajmal Mian
{"title":"利用扩散模型对内在语义进行无监督学习,实现人员再识别","authors":"Xuefeng Tao;Jun Kong;Min Jiang;Ming Lu;Ajmal Mian","doi":"10.1109/TIP.2024.3514360","DOIUrl":null,"url":null,"abstract":"Unsupervised person re-identification (Re-ID) aims to learn semantic representations for person retrieval without using identity labels. Most existing methods generate fine-grained patch features to reduce noise in global feature clustering. However, these methods often compromise the discriminative semantic structure and overlook the semantic consistency between the patch and global features. To address these problems, we propose a Person Intrinsic Semantic Learning (PISL) framework with diffusion model for unsupervised person Re-ID. First, we design the Spatial Diffusion Model (SDM), which performs a denoising diffusion process from noisy spatial transformer parameters to semantic parameters, enabling the sampling of patches with intrinsic semantic structure. Second, we propose the Semantic Controlled Diffusion (SCD) loss to guide the denoising direction of the diffusion model, facilitating the generation of semantic patches. Third, we propose the Patch Semantic Consistency (PSC) loss to capture semantic consistency between the patch and global features, refining the pseudo-labels of global features. Comprehensive experiments on three challenging datasets show that our method surpasses current unsupervised Re-ID methods. The source code will be publicly available at \n<uri>https://github.com/taoxuefong/Diffusion-reid</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6705-6719"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Learning of Intrinsic Semantics With Diffusion Model for Person Re-Identification\",\"authors\":\"Xuefeng Tao;Jun Kong;Min Jiang;Ming Lu;Ajmal Mian\",\"doi\":\"10.1109/TIP.2024.3514360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised person re-identification (Re-ID) aims to learn semantic representations for person retrieval without using identity labels. Most existing methods generate fine-grained patch features to reduce noise in global feature clustering. However, these methods often compromise the discriminative semantic structure and overlook the semantic consistency between the patch and global features. To address these problems, we propose a Person Intrinsic Semantic Learning (PISL) framework with diffusion model for unsupervised person Re-ID. First, we design the Spatial Diffusion Model (SDM), which performs a denoising diffusion process from noisy spatial transformer parameters to semantic parameters, enabling the sampling of patches with intrinsic semantic structure. Second, we propose the Semantic Controlled Diffusion (SCD) loss to guide the denoising direction of the diffusion model, facilitating the generation of semantic patches. Third, we propose the Patch Semantic Consistency (PSC) loss to capture semantic consistency between the patch and global features, refining the pseudo-labels of global features. Comprehensive experiments on three challenging datasets show that our method surpasses current unsupervised Re-ID methods. The source code will be publicly available at \\n<uri>https://github.com/taoxuefong/Diffusion-reid</uri>\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"6705-6719\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804086/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804086/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无监督人员再识别(Re-ID)旨在学习语义表示,以便在不使用身份标签的情况下进行人员检索。现有的方法大多是通过生成细粒度的patch特征来降低全局特征聚类中的噪声。然而,这些方法往往损害了判别语义结构,忽略了补丁和全局特征之间的语义一致性。为了解决这些问题,我们提出了一个带有扩散模型的无监督人再识别的人内在语义学习(PISL)框架。首先,我们设计了空间扩散模型(Spatial Diffusion Model, SDM),该模型进行了从有噪声的空间变压器参数到语义参数的去噪扩散过程,实现了对具有固有语义结构的斑块的采样。其次,我们提出了语义控制扩散(Semantic Controlled Diffusion, SCD)损失来指导扩散模型的去噪方向,促进语义补丁的生成。第三,提出补丁语义一致性(Patch Semantic Consistency, PSC)损失来捕获补丁与全局特征之间的语义一致性,对全局特征的伪标签进行细化。在三个具有挑战性的数据集上进行的综合实验表明,我们的方法优于当前的无监督Re-ID方法。源代码将在https://github.com/taoxuefong/Diffusion-reid上公开提供
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Learning of Intrinsic Semantics With Diffusion Model for Person Re-Identification
Unsupervised person re-identification (Re-ID) aims to learn semantic representations for person retrieval without using identity labels. Most existing methods generate fine-grained patch features to reduce noise in global feature clustering. However, these methods often compromise the discriminative semantic structure and overlook the semantic consistency between the patch and global features. To address these problems, we propose a Person Intrinsic Semantic Learning (PISL) framework with diffusion model for unsupervised person Re-ID. First, we design the Spatial Diffusion Model (SDM), which performs a denoising diffusion process from noisy spatial transformer parameters to semantic parameters, enabling the sampling of patches with intrinsic semantic structure. Second, we propose the Semantic Controlled Diffusion (SCD) loss to guide the denoising direction of the diffusion model, facilitating the generation of semantic patches. Third, we propose the Patch Semantic Consistency (PSC) loss to capture semantic consistency between the patch and global features, refining the pseudo-labels of global features. Comprehensive experiments on three challenging datasets show that our method surpasses current unsupervised Re-ID methods. The source code will be publicly available at https://github.com/taoxuefong/Diffusion-reid
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Text-Video Retrieval Performance With Low-Salient but Discriminative Objects Breaking Boundaries: Unifying Imaging and Compression for HDR Image Compression A Pyramid Fusion MLP for Dense Prediction IFENet: Interaction, Fusion, and Enhancement Network for V-D-T Salient Object Detection NeuralDiffuser: Neuroscience-Inspired Diffusion Guidance for fMRI Visual Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1