{"title":"立体活性电子孤对促进四方 BaSnF4 中氟离子的扩散","authors":"Xiliang Lian, Damien Dambournet, Mathieu Salanne","doi":"10.1021/acs.chemmater.4c02756","DOIUrl":null,"url":null,"abstract":"Solid-state ionic conductors are of primary importance for the design of tomorrow’s batteries. In lithium- or sodium-ion-based materials, the alkali cations diffuse through three-dimensional channels consisting of interconnected tetrahedral or octahedral sites with low free energy barriers between them. Fluoride ion conductors stand out in this landscape since the materials with the highest conductivities belong to the MSnF<sub>4</sub> family (in which M<sup>2+</sup> is a divalent cation), whose structure is layered and characterized by double-layers of Sn<sup>2+</sup> and M<sup>2+</sup> cations along a given direction. Importantly, these materials display stereoactive electron lone pairs (LPs) that seemingly play an important role not only in stabilizing the Sn–Sn layer but also in modulating the fluoride ion diffusive behavior. However, despite previous experimental and simulation studies, the involvement of the LPs in the fluoride ion conduction mechanism remains to be quantitatively understood. In this work, we simulate the BaSnF<sub>4</sub> tetragonal structure using machine learning-based molecular dynamics, in which the interaction potential is trained on density functional theory data. We investigated the role of the Sn–LP–Sn layer in lowering the diffusion energy landscape. In particular, we show how the F<sup>–</sup> ions jump across this layer and occur much more frequently than in the Ba–F–Ba one, resulting in the formation of vacancies in the Ba–Sn layers. Concurrently, the LP stereochemical activity fluctuates to accommodate the F ions jumping. In addition, the presence of the LP layer enhances the flexibility of the Sn ions, which leads to an increase in two-dimensional diffusion by several orders of magnitude. These results contribute to our understanding of the interplay between LPs and ionic diffusion, helping to explain the good performance of the material in fluoride-ion batteries.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"88 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereoactive Electron Lone Pairs Facilitate Fluoride Ion Diffusion in Tetragonal BaSnF4\",\"authors\":\"Xiliang Lian, Damien Dambournet, Mathieu Salanne\",\"doi\":\"10.1021/acs.chemmater.4c02756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state ionic conductors are of primary importance for the design of tomorrow’s batteries. In lithium- or sodium-ion-based materials, the alkali cations diffuse through three-dimensional channels consisting of interconnected tetrahedral or octahedral sites with low free energy barriers between them. Fluoride ion conductors stand out in this landscape since the materials with the highest conductivities belong to the MSnF<sub>4</sub> family (in which M<sup>2+</sup> is a divalent cation), whose structure is layered and characterized by double-layers of Sn<sup>2+</sup> and M<sup>2+</sup> cations along a given direction. Importantly, these materials display stereoactive electron lone pairs (LPs) that seemingly play an important role not only in stabilizing the Sn–Sn layer but also in modulating the fluoride ion diffusive behavior. However, despite previous experimental and simulation studies, the involvement of the LPs in the fluoride ion conduction mechanism remains to be quantitatively understood. In this work, we simulate the BaSnF<sub>4</sub> tetragonal structure using machine learning-based molecular dynamics, in which the interaction potential is trained on density functional theory data. We investigated the role of the Sn–LP–Sn layer in lowering the diffusion energy landscape. In particular, we show how the F<sup>–</sup> ions jump across this layer and occur much more frequently than in the Ba–F–Ba one, resulting in the formation of vacancies in the Ba–Sn layers. Concurrently, the LP stereochemical activity fluctuates to accommodate the F ions jumping. In addition, the presence of the LP layer enhances the flexibility of the Sn ions, which leads to an increase in two-dimensional diffusion by several orders of magnitude. These results contribute to our understanding of the interplay between LPs and ionic diffusion, helping to explain the good performance of the material in fluoride-ion batteries.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02756\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02756","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Stereoactive Electron Lone Pairs Facilitate Fluoride Ion Diffusion in Tetragonal BaSnF4
Solid-state ionic conductors are of primary importance for the design of tomorrow’s batteries. In lithium- or sodium-ion-based materials, the alkali cations diffuse through three-dimensional channels consisting of interconnected tetrahedral or octahedral sites with low free energy barriers between them. Fluoride ion conductors stand out in this landscape since the materials with the highest conductivities belong to the MSnF4 family (in which M2+ is a divalent cation), whose structure is layered and characterized by double-layers of Sn2+ and M2+ cations along a given direction. Importantly, these materials display stereoactive electron lone pairs (LPs) that seemingly play an important role not only in stabilizing the Sn–Sn layer but also in modulating the fluoride ion diffusive behavior. However, despite previous experimental and simulation studies, the involvement of the LPs in the fluoride ion conduction mechanism remains to be quantitatively understood. In this work, we simulate the BaSnF4 tetragonal structure using machine learning-based molecular dynamics, in which the interaction potential is trained on density functional theory data. We investigated the role of the Sn–LP–Sn layer in lowering the diffusion energy landscape. In particular, we show how the F– ions jump across this layer and occur much more frequently than in the Ba–F–Ba one, resulting in the formation of vacancies in the Ba–Sn layers. Concurrently, the LP stereochemical activity fluctuates to accommodate the F ions jumping. In addition, the presence of the LP layer enhances the flexibility of the Sn ions, which leads to an increase in two-dimensional diffusion by several orders of magnitude. These results contribute to our understanding of the interplay between LPs and ionic diffusion, helping to explain the good performance of the material in fluoride-ion batteries.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.