茄衍生的外泌体样纳米囊泡通过Keap1/Nrf2途径减轻血管损伤后的再狭窄。

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2024-12-16 DOI:10.1039/D4FO03993A
Hechen Shen, Meng Zhang, Dachang Liu, Xiaoyu Liang, Yun Chang, Xiaomin Hu and Wenqing Gao
{"title":"茄衍生的外泌体样纳米囊泡通过Keap1/Nrf2途径减轻血管损伤后的再狭窄。","authors":"Hechen Shen, Meng Zhang, Dachang Liu, Xiaoyu Liang, Yun Chang, Xiaomin Hu and Wenqing Gao","doi":"10.1039/D4FO03993A","DOIUrl":null,"url":null,"abstract":"<p >Despite the significant alleviation of clinical cardiovascular diseases through appropriate interventional treatments, the recurrence of vascular restenosis necessitating reoperation remains a substantial challenge impacting patient prognosis. Plant-derived exosome-like nanovesicles (PELNs) are integral to interspecies cellular communication, with their functions and potential applications garnering significant attention from the research community. This study extracted <em>Solanum lycopersicum</em>-derived exosome-like nanovesicles (SL-ELNs) and demonstrated their inhibition of PDGF-BB-induced proliferation, migration, and phenotypic transformation of vascular smooth muscle cells (VSMCs). Mechanistically, miRNA164a/b-5p within the SL-ELNs reduced the expression of Keap1 mRNA, thereby increasing nuclear translocation of Nrf2 and enhancing the expression of antioxidant genes to alleviate oxidative stress. In a mouse carotid artery injury model, it was further confirmed that miRNA164a/b-5p within the SL-ELNs could inhibit neointimal hyperplasia. These results suggest that SL-ELNs inhibit VSMCs proliferation, migration, and phenotypic transformation, and they might be potential therapeutic agents for the prevention or treatment of restenosis.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 2","pages":" 539-553"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fo/d4fo03993a?page=search","citationCount":"0","resultStr":"{\"title\":\"Solanum lycopersicum derived exosome-like nanovesicles alleviate restenosis after vascular injury through the Keap1/Nrf2 pathway†\",\"authors\":\"Hechen Shen, Meng Zhang, Dachang Liu, Xiaoyu Liang, Yun Chang, Xiaomin Hu and Wenqing Gao\",\"doi\":\"10.1039/D4FO03993A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Despite the significant alleviation of clinical cardiovascular diseases through appropriate interventional treatments, the recurrence of vascular restenosis necessitating reoperation remains a substantial challenge impacting patient prognosis. Plant-derived exosome-like nanovesicles (PELNs) are integral to interspecies cellular communication, with their functions and potential applications garnering significant attention from the research community. This study extracted <em>Solanum lycopersicum</em>-derived exosome-like nanovesicles (SL-ELNs) and demonstrated their inhibition of PDGF-BB-induced proliferation, migration, and phenotypic transformation of vascular smooth muscle cells (VSMCs). Mechanistically, miRNA164a/b-5p within the SL-ELNs reduced the expression of Keap1 mRNA, thereby increasing nuclear translocation of Nrf2 and enhancing the expression of antioxidant genes to alleviate oxidative stress. In a mouse carotid artery injury model, it was further confirmed that miRNA164a/b-5p within the SL-ELNs could inhibit neointimal hyperplasia. These results suggest that SL-ELNs inhibit VSMCs proliferation, migration, and phenotypic transformation, and they might be potential therapeutic agents for the prevention or treatment of restenosis.</p>\",\"PeriodicalId\":77,\"journal\":{\"name\":\"Food & Function\",\"volume\":\" 2\",\"pages\":\" 539-553\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/fo/d4fo03993a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food & Function\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/fo/d4fo03993a\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fo/d4fo03993a","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管通过适当的介入治疗,临床心血管疾病得到了明显的缓解,但血管再狭窄的复发仍然是影响患者预后的一个重大挑战。植物源性外泌体样纳米囊泡(peln)是种间细胞交流不可或缺的组成部分,其功能和潜在的应用受到了研究界的广泛关注。本研究提取了茄属番茄衍生的外泌体样纳米囊泡(SL-ELNs),并证明了它们对pdgf - bb诱导的血管平滑肌细胞(VSMCs)的增殖、迁移和表型转化的抑制作用。在机制上,sl - eln内的miRNA164a/b-5p降低Keap1 mRNA的表达,从而增加Nrf2的核易位,增强抗氧化基因的表达,从而缓解氧化应激。在小鼠颈动脉损伤模型中,进一步证实sl - eln内的miRNA164a/b-5p能够抑制新生内膜增生。提示sl - eln可抑制VSMCs的增殖、迁移和表型转化,可能是预防或治疗再狭窄的潜在药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solanum lycopersicum derived exosome-like nanovesicles alleviate restenosis after vascular injury through the Keap1/Nrf2 pathway†

Despite the significant alleviation of clinical cardiovascular diseases through appropriate interventional treatments, the recurrence of vascular restenosis necessitating reoperation remains a substantial challenge impacting patient prognosis. Plant-derived exosome-like nanovesicles (PELNs) are integral to interspecies cellular communication, with their functions and potential applications garnering significant attention from the research community. This study extracted Solanum lycopersicum-derived exosome-like nanovesicles (SL-ELNs) and demonstrated their inhibition of PDGF-BB-induced proliferation, migration, and phenotypic transformation of vascular smooth muscle cells (VSMCs). Mechanistically, miRNA164a/b-5p within the SL-ELNs reduced the expression of Keap1 mRNA, thereby increasing nuclear translocation of Nrf2 and enhancing the expression of antioxidant genes to alleviate oxidative stress. In a mouse carotid artery injury model, it was further confirmed that miRNA164a/b-5p within the SL-ELNs could inhibit neointimal hyperplasia. These results suggest that SL-ELNs inhibit VSMCs proliferation, migration, and phenotypic transformation, and they might be potential therapeutic agents for the prevention or treatment of restenosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Rice bran peptides target lectin-like oxidized low-density lipoprotein receptor-1 to ameliorate atherosclerosis. A review of the role of bioactive components in legumes in the prevention and treatment of cardiovascular diseases. A plant-based diet index and all-cause and cause-specific mortality: a prospective study. Modification of Ganoderma lucidum spore shells into probiotic carriers: selective loading and colonic delivery of Lacticaseibacillus rhamnosus and effective therapy of inflammatory bowel disease. Monascus pilosus SWM-008 red mold rice and its components, monascinol and monascin, reduce obesity in a high-fat diet-induced rat model through synergistic modulation of gut microbiota and anti-lipogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1