{"title":"s -棕榈酰化蛋白调控植物病原真菌的毒力。","authors":"Mengmeng Guo, Leeza Tariq, Fengming Song","doi":"10.1128/mbio.03472-24","DOIUrl":null,"url":null,"abstract":"<p><p>Protein <i>S</i>-palmitoylation, a universal posttranslational modification catalyzed by a specific group of palmitoyltransferases, plays crucial roles in diverse biological processes across organisms by modulating protein functions. However, its roles in the virulence of plant pathogenic fungi remain underexplored. In a recent study, Y. Duan, P. Li, D. Zhang, L. Wang, et al. (mBio 15:e02704-24, 2024, https://doi.org/10.1128/mbio.02704-24) reported that the palmitoyltransferases UvPfa3 and UvPfa4 regulate the virulence of the rice false smut pathogen <i>Ustilaginoidea virens</i>. Through comprehensive characterization of <i>S</i>-palmitoylation sites, they revealed that <i>S</i>-palmitoylated proteins in <i>U. virens</i> are enriched in mitogen-activated protein (MAP) kinase and autophagy pathways, with MAP kinase UvSlt2 being a key target of UvPfa4-mediated <i>S</i>-palmitoylation. Further investigation demonstrated that <i>S</i>-palmitoylation of UvSlt2 is critical for its kinase activity, substrate interaction ability, and virulence function in <i>U. virens</i>. These findings reveal UvPfa4-mediated <i>S</i>-palmitoylation as a vital regulatory mechanism in <i>U. virens</i> virulence, highlighting the importance of protein <i>S</i>-palmitoylation in the pathogenicity of plant pathogenic fungi.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0347224"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796406/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein <i>S</i>-palmitoylation regulates the virulence of plant pathogenic fungi.\",\"authors\":\"Mengmeng Guo, Leeza Tariq, Fengming Song\",\"doi\":\"10.1128/mbio.03472-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein <i>S</i>-palmitoylation, a universal posttranslational modification catalyzed by a specific group of palmitoyltransferases, plays crucial roles in diverse biological processes across organisms by modulating protein functions. However, its roles in the virulence of plant pathogenic fungi remain underexplored. In a recent study, Y. Duan, P. Li, D. Zhang, L. Wang, et al. (mBio 15:e02704-24, 2024, https://doi.org/10.1128/mbio.02704-24) reported that the palmitoyltransferases UvPfa3 and UvPfa4 regulate the virulence of the rice false smut pathogen <i>Ustilaginoidea virens</i>. Through comprehensive characterization of <i>S</i>-palmitoylation sites, they revealed that <i>S</i>-palmitoylated proteins in <i>U. virens</i> are enriched in mitogen-activated protein (MAP) kinase and autophagy pathways, with MAP kinase UvSlt2 being a key target of UvPfa4-mediated <i>S</i>-palmitoylation. Further investigation demonstrated that <i>S</i>-palmitoylation of UvSlt2 is critical for its kinase activity, substrate interaction ability, and virulence function in <i>U. virens</i>. These findings reveal UvPfa4-mediated <i>S</i>-palmitoylation as a vital regulatory mechanism in <i>U. virens</i> virulence, highlighting the importance of protein <i>S</i>-palmitoylation in the pathogenicity of plant pathogenic fungi.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0347224\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.03472-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03472-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Protein S-palmitoylation regulates the virulence of plant pathogenic fungi.
Protein S-palmitoylation, a universal posttranslational modification catalyzed by a specific group of palmitoyltransferases, plays crucial roles in diverse biological processes across organisms by modulating protein functions. However, its roles in the virulence of plant pathogenic fungi remain underexplored. In a recent study, Y. Duan, P. Li, D. Zhang, L. Wang, et al. (mBio 15:e02704-24, 2024, https://doi.org/10.1128/mbio.02704-24) reported that the palmitoyltransferases UvPfa3 and UvPfa4 regulate the virulence of the rice false smut pathogen Ustilaginoidea virens. Through comprehensive characterization of S-palmitoylation sites, they revealed that S-palmitoylated proteins in U. virens are enriched in mitogen-activated protein (MAP) kinase and autophagy pathways, with MAP kinase UvSlt2 being a key target of UvPfa4-mediated S-palmitoylation. Further investigation demonstrated that S-palmitoylation of UvSlt2 is critical for its kinase activity, substrate interaction ability, and virulence function in U. virens. These findings reveal UvPfa4-mediated S-palmitoylation as a vital regulatory mechanism in U. virens virulence, highlighting the importance of protein S-palmitoylation in the pathogenicity of plant pathogenic fungi.
期刊介绍:
mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.