炎症中的 N6-甲基腺苷(m6A)修饰:文献计量分析和文献综述。

IF 2.3 3区 生物学 Q2 MULTIDISCIPLINARY SCIENCES PeerJ Pub Date : 2024-12-13 eCollection Date: 2024-01-01 DOI:10.7717/peerj.18645
Zewen Li, Yongfeng Lao, Rui Yan, Xin Guan, Yanan Bai, Fuhan Li, Zhilong Dong
{"title":"炎症中的 N6-甲基腺苷(m6A)修饰:文献计量分析和文献综述。","authors":"Zewen Li, Yongfeng Lao, Rui Yan, Xin Guan, Yanan Bai, Fuhan Li, Zhilong Dong","doi":"10.7717/peerj.18645","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenosine (m6A) is the most abundant internal messenger RNA modification in eukaryotes, influencing various physiological and pathological processes by regulating RNA metabolism. Numerous studies have investigated the role of m6A in inflammatory responses and inflammatory diseases. In this study, VOSviewer and Citespace were used to perform bibliometric analysis to systematically evaluating the current landscape of research on the association between m6A and inflammation. The literature was sourced from the Web of Science Core Collection, with characteristics including year, country/region, institution, author, journal, citation, and keywords. According to the bibliometric analysis results of keywords, we present a narrative summary of the potential mechanisms by which m6A regulates inflammation. The results showed that the key mechanisms by which m6A modulates inflammation include apoptosis, autophagy, oxidative stress, immune cell dysfunction, and dysregulation of signaling pathways.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"12 ","pages":"e18645"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648684/pdf/","citationCount":"0","resultStr":"{\"title\":\"N6-methyladenosine (m6A) modification in inflammation: a bibliometric analysis and literature review.\",\"authors\":\"Zewen Li, Yongfeng Lao, Rui Yan, Xin Guan, Yanan Bai, Fuhan Li, Zhilong Dong\",\"doi\":\"10.7717/peerj.18645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N6-methyladenosine (m6A) is the most abundant internal messenger RNA modification in eukaryotes, influencing various physiological and pathological processes by regulating RNA metabolism. Numerous studies have investigated the role of m6A in inflammatory responses and inflammatory diseases. In this study, VOSviewer and Citespace were used to perform bibliometric analysis to systematically evaluating the current landscape of research on the association between m6A and inflammation. The literature was sourced from the Web of Science Core Collection, with characteristics including year, country/region, institution, author, journal, citation, and keywords. According to the bibliometric analysis results of keywords, we present a narrative summary of the potential mechanisms by which m6A regulates inflammation. The results showed that the key mechanisms by which m6A modulates inflammation include apoptosis, autophagy, oxidative stress, immune cell dysfunction, and dysregulation of signaling pathways.</p>\",\"PeriodicalId\":19799,\"journal\":{\"name\":\"PeerJ\",\"volume\":\"12 \",\"pages\":\"e18645\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648684/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj.18645\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18645","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N6-methyladenosine (m6A) modification in inflammation: a bibliometric analysis and literature review.

N6-methyladenosine (m6A) is the most abundant internal messenger RNA modification in eukaryotes, influencing various physiological and pathological processes by regulating RNA metabolism. Numerous studies have investigated the role of m6A in inflammatory responses and inflammatory diseases. In this study, VOSviewer and Citespace were used to perform bibliometric analysis to systematically evaluating the current landscape of research on the association between m6A and inflammation. The literature was sourced from the Web of Science Core Collection, with characteristics including year, country/region, institution, author, journal, citation, and keywords. According to the bibliometric analysis results of keywords, we present a narrative summary of the potential mechanisms by which m6A regulates inflammation. The results showed that the key mechanisms by which m6A modulates inflammation include apoptosis, autophagy, oxidative stress, immune cell dysfunction, and dysregulation of signaling pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ
PeerJ MULTIDISCIPLINARY SCIENCES-
CiteScore
4.70
自引率
3.70%
发文量
1665
审稿时长
10 weeks
期刊介绍: PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.
期刊最新文献
Ontogenetic feeding shifts in two thresher shark species in the Galapagos Marine Reserve. Prevalence of Theileria ovis in sheep and goats in northwestern Saudi Arabia with notes on potential vectors. The relationship between mitochondrial DNA haplotype and its copy number on body weight and morphological traits of Wuliangshan black-bone chickens. Hydrogen gas inhalation prior to high-intensity training reduces attenuation of nitric oxide bioavailability in male rugby players. Identification of chromosome ploidy and karyotype analysis of cherries (Prunus pseudocerasus Lindl.) in Guizhou.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1