影响大豆异黄酮含量表型可塑性的遗传位点的dQTG分析。seq模型。

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2024-12-17 DOI:10.1007/s00122-024-04798-4
Zhenhong Yang, Yuhang Zhan, Yina Zhu, Hanhan Zhu, Changjun Zhou, Ming Yuan, Haiyan Li, Miao Liu, Weili Teng, Yongguang Li, Xue Zhao, Yuhe Wang, Yingpeng Han
{"title":"影响大豆异黄酮含量表型可塑性的遗传位点的dQTG分析。seq模型。","authors":"Zhenhong Yang, Yuhang Zhan, Yina Zhu, Hanhan Zhu, Changjun Zhou, Ming Yuan, Haiyan Li, Miao Liu, Weili Teng, Yongguang Li, Xue Zhao, Yuhe Wang, Yingpeng Han","doi":"10.1007/s00122-024-04798-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>The dQTG.seq model was utilized to investigate the genetic underpinnings of phenotypic plasticity in soybean isoflavone content, leading to the identification of 100 marker sites associated with phenotypic plasticity, including 27 transcription factors. Overexpression of Glyma.18G091600 (GmERF7) hairy roots under low temperature, salt, and drought stress confirmed the regulatory role of GmERF7 in the phenotypic plasticity of soybean isoflavone content. Phenotypic plasticity is characteristic of organisms that undergo phenotypic changes in response to environmental fluctuations. This phenomenon is pivotal in evolutionary processes and the emergence of new traits. Isoflavones, significant secondary metabolites found in soybeans, have garnered considerable attention owing to their beneficial physiological effects on human health. The variation in isoflavone content among different soybean varieties is influenced by diverse environmental factors, thereby influencing the evaluation of high and low isoflavone varieties. In this study, we measured the phenotypic plasticity of isoflavone content in recombinant inbred lines Hefeng 25 and L-28 in three different environments over two years. Utilizing the dQTG.seq model, 100 statistically significant markers were identified, and 101 potential genes, including 27 transcription factors, were screened. Through qRT-PCR analysis, elevated expression levels of Glyma.18G091600, Glyma.09G196200, and Glyma.05G229500 were observed in various parts of soybean plants. Under low temperature, drought or salt stress conditions, the related enzymes involved in the isoflavone synthesis pathway were notably upregulated in Glyma.18G091600 (GmERF7) overexpressed hairy roots compared to wild-type controls, resulting to higher phenotypic plasticity values for DZ, GC, GT, and TI. These results suggest that GmERF7 influences the phenotypic plasticity of soybean isoflavone content, enhancing adaptation to adverse environments, while also promoting the synthesis and accumulation of soybean isoflavones.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"9"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The analysis of the genetic loci affecting phenotypic plasticity of soybean isoflavone content by dQTG.seq model.\",\"authors\":\"Zhenhong Yang, Yuhang Zhan, Yina Zhu, Hanhan Zhu, Changjun Zhou, Ming Yuan, Haiyan Li, Miao Liu, Weili Teng, Yongguang Li, Xue Zhao, Yuhe Wang, Yingpeng Han\",\"doi\":\"10.1007/s00122-024-04798-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>The dQTG.seq model was utilized to investigate the genetic underpinnings of phenotypic plasticity in soybean isoflavone content, leading to the identification of 100 marker sites associated with phenotypic plasticity, including 27 transcription factors. Overexpression of Glyma.18G091600 (GmERF7) hairy roots under low temperature, salt, and drought stress confirmed the regulatory role of GmERF7 in the phenotypic plasticity of soybean isoflavone content. Phenotypic plasticity is characteristic of organisms that undergo phenotypic changes in response to environmental fluctuations. This phenomenon is pivotal in evolutionary processes and the emergence of new traits. Isoflavones, significant secondary metabolites found in soybeans, have garnered considerable attention owing to their beneficial physiological effects on human health. The variation in isoflavone content among different soybean varieties is influenced by diverse environmental factors, thereby influencing the evaluation of high and low isoflavone varieties. In this study, we measured the phenotypic plasticity of isoflavone content in recombinant inbred lines Hefeng 25 and L-28 in three different environments over two years. Utilizing the dQTG.seq model, 100 statistically significant markers were identified, and 101 potential genes, including 27 transcription factors, were screened. Through qRT-PCR analysis, elevated expression levels of Glyma.18G091600, Glyma.09G196200, and Glyma.05G229500 were observed in various parts of soybean plants. Under low temperature, drought or salt stress conditions, the related enzymes involved in the isoflavone synthesis pathway were notably upregulated in Glyma.18G091600 (GmERF7) overexpressed hairy roots compared to wild-type controls, resulting to higher phenotypic plasticity values for DZ, GC, GT, and TI. These results suggest that GmERF7 influences the phenotypic plasticity of soybean isoflavone content, enhancing adaptation to adverse environments, while also promoting the synthesis and accumulation of soybean isoflavones.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"138 1\",\"pages\":\"9\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-024-04798-4\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04798-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:dQTG。利用Seq模型研究大豆异黄酮含量表型可塑性的遗传基础,鉴定出100个与表型可塑性相关的标记位点,其中包括27个转录因子。低温、盐胁迫和干旱胁迫下Glyma.18G091600 (GmERF7)毛状根的过表达证实了GmERF7对大豆异黄酮含量表型可塑性的调控作用。表型可塑性是生物体在响应环境波动时发生表型变化的特征。这种现象在进化过程和新特征的出现中是至关重要的。大豆中发现的重要次生代谢物异黄酮因其对人体健康的有益生理作用而引起了相当大的关注。大豆异黄酮含量在不同品种间的差异受不同环境因素的影响,从而影响异黄酮高、低品种的评价。本研究对重组自交系禾丰25和L-28在两年内三种不同环境下异黄酮含量的表型可塑性进行了测定。利用dQTG。Seq模型,鉴定出100个具有统计学意义的标记,筛选出101个潜在基因,包括27个转录因子。通过qRT-PCR分析,Glyma.18G091600、Glyma.09G196200和Glyma.05G229500在大豆植株各部位的表达水平均有所升高。在低温、干旱或盐胁迫条件下,与野生型对照相比,Glyma.18G091600 (GmERF7)过表达毛状根中参与异黄酮合成途径的相关酶显著上调,导致DZ、GC、GT和TI的表型可塑性值更高。这些结果表明,GmERF7影响大豆异黄酮含量的表型可塑性,增强大豆对不利环境的适应性,同时也促进大豆异黄酮的合成和积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The analysis of the genetic loci affecting phenotypic plasticity of soybean isoflavone content by dQTG.seq model.

Key message: The dQTG.seq model was utilized to investigate the genetic underpinnings of phenotypic plasticity in soybean isoflavone content, leading to the identification of 100 marker sites associated with phenotypic plasticity, including 27 transcription factors. Overexpression of Glyma.18G091600 (GmERF7) hairy roots under low temperature, salt, and drought stress confirmed the regulatory role of GmERF7 in the phenotypic plasticity of soybean isoflavone content. Phenotypic plasticity is characteristic of organisms that undergo phenotypic changes in response to environmental fluctuations. This phenomenon is pivotal in evolutionary processes and the emergence of new traits. Isoflavones, significant secondary metabolites found in soybeans, have garnered considerable attention owing to their beneficial physiological effects on human health. The variation in isoflavone content among different soybean varieties is influenced by diverse environmental factors, thereby influencing the evaluation of high and low isoflavone varieties. In this study, we measured the phenotypic plasticity of isoflavone content in recombinant inbred lines Hefeng 25 and L-28 in three different environments over two years. Utilizing the dQTG.seq model, 100 statistically significant markers were identified, and 101 potential genes, including 27 transcription factors, were screened. Through qRT-PCR analysis, elevated expression levels of Glyma.18G091600, Glyma.09G196200, and Glyma.05G229500 were observed in various parts of soybean plants. Under low temperature, drought or salt stress conditions, the related enzymes involved in the isoflavone synthesis pathway were notably upregulated in Glyma.18G091600 (GmERF7) overexpressed hairy roots compared to wild-type controls, resulting to higher phenotypic plasticity values for DZ, GC, GT, and TI. These results suggest that GmERF7 influences the phenotypic plasticity of soybean isoflavone content, enhancing adaptation to adverse environments, while also promoting the synthesis and accumulation of soybean isoflavones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
BrCYP71 mutation resulted in stay-green in pak choi (Brassica rapa L. ssp. chinensis). Comparative genomic prediction of resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum race 2) in watermelon: parametric and nonparametric approaches. Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning. Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq. Genomic selection shows improved expected genetic gain over phenotypic selection of agronomic traits in allotetraploid white clover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1