Jianyong Shi, Yuchen Zhang, Gaojie Xu, Wei Dai, Zhanlei Liu
{"title":"Interface shear creep behavior between the nonwoven geotextile and the geomembrane pre/post peak strength","authors":"Jianyong Shi, Yuchen Zhang, Gaojie Xu, Wei Dai, Zhanlei Liu","doi":"10.1016/j.geotexmem.2024.12.001","DOIUrl":null,"url":null,"abstract":"In landfills, shear creep of the liner interface occurs after some shear displacements under the influence of a sustained load from waste. In this paper, an apparatus was developed to conduct shear creep tests on interfaces after different initial shear displacements, and experimental investigations were performed on the shear creep behavior of the geotextile and geomembrane interfaces pre/post peak strength. The results demonstrated that the initial instantaneous displacement and the steady displacement rate at the interface increased with increasing shear stress. The initial instantaneous displacement at the geomembrane‒geotextile interface in the post-peak tests was reduced compared with that in the pre-peak tests, whereas the displacement rate at elevated shear stress levels was greater in the post-peak tests than in the pre-peak tests. The creep behavior of the interface was influenced by both the initial shear displacement and the material interaction. An analysis of the Nishihara model revealed that the shear modulus of the Hooke body at the interface increased with increasing shear stress in the pre-peak test, whereas it decreased in the post-peak test as the shear stress increased. The difference in calculated creep time from the 30-day test results and from 3-day creep test results was approximately 8.9%.","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"258 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.geotexmem.2024.12.001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Interface shear creep behavior between the nonwoven geotextile and the geomembrane pre/post peak strength
In landfills, shear creep of the liner interface occurs after some shear displacements under the influence of a sustained load from waste. In this paper, an apparatus was developed to conduct shear creep tests on interfaces after different initial shear displacements, and experimental investigations were performed on the shear creep behavior of the geotextile and geomembrane interfaces pre/post peak strength. The results demonstrated that the initial instantaneous displacement and the steady displacement rate at the interface increased with increasing shear stress. The initial instantaneous displacement at the geomembrane‒geotextile interface in the post-peak tests was reduced compared with that in the pre-peak tests, whereas the displacement rate at elevated shear stress levels was greater in the post-peak tests than in the pre-peak tests. The creep behavior of the interface was influenced by both the initial shear displacement and the material interaction. An analysis of the Nishihara model revealed that the shear modulus of the Hooke body at the interface increased with increasing shear stress in the pre-peak test, whereas it decreased in the post-peak test as the shear stress increased. The difference in calculated creep time from the 30-day test results and from 3-day creep test results was approximately 8.9%.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.