Ennio M. Palmeira, Matheus V. Souza, Dellane S.C. Santos, Ivonne A.M.G. Góngora
{"title":"内部不稳定土壤-无纺土工织物系统的水力特性研究:边界值和初步估算","authors":"Ennio M. Palmeira, Matheus V. Souza, Dellane S.C. Santos, Ivonne A.M.G. Góngora","doi":"10.1016/j.geotexmem.2024.11.002","DOIUrl":null,"url":null,"abstract":"Internally unstable soils can pose severe conditions to granular and geotextile filters in geotechnical engineering works. Regarding the latter, several researchers have investigated the behaviour of such filters in contact with internally unstable soils and severe clogging and flow rate reductions of soil-geotextile filter systems have been observed in several cases. This paper presents a study on the prediction of boundary values for hydraulic properties of nonwoven geotextile filters in cohesionless internally unstable soils. A broad survey on results of filtration tests present in the literature was carried out for the development of a database for the study. The results obtained show that significant reductions in soil-geotextile system permeability coefficient and flow rate may occur independent on the type of test carried out, quite often as a consequence of poor hydraulic behaviour of the soil rather than geotextile filter clogging. The study has identified the level of importance of relevant parameters to assess potential malfunction of the soil-geotextile system and equations were developed to predict lower bound values and estimates of soil-geotextile system permeability coefficient for preliminary analyses.","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"116 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the hydraulic properties of internally unstable soil-nonwoven geotextile systems: Boundary values and preliminary estimates\",\"authors\":\"Ennio M. Palmeira, Matheus V. Souza, Dellane S.C. Santos, Ivonne A.M.G. Góngora\",\"doi\":\"10.1016/j.geotexmem.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internally unstable soils can pose severe conditions to granular and geotextile filters in geotechnical engineering works. Regarding the latter, several researchers have investigated the behaviour of such filters in contact with internally unstable soils and severe clogging and flow rate reductions of soil-geotextile filter systems have been observed in several cases. This paper presents a study on the prediction of boundary values for hydraulic properties of nonwoven geotextile filters in cohesionless internally unstable soils. A broad survey on results of filtration tests present in the literature was carried out for the development of a database for the study. The results obtained show that significant reductions in soil-geotextile system permeability coefficient and flow rate may occur independent on the type of test carried out, quite often as a consequence of poor hydraulic behaviour of the soil rather than geotextile filter clogging. The study has identified the level of importance of relevant parameters to assess potential malfunction of the soil-geotextile system and equations were developed to predict lower bound values and estimates of soil-geotextile system permeability coefficient for preliminary analyses.\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.geotexmem.2024.11.002\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.geotexmem.2024.11.002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Study on the hydraulic properties of internally unstable soil-nonwoven geotextile systems: Boundary values and preliminary estimates
Internally unstable soils can pose severe conditions to granular and geotextile filters in geotechnical engineering works. Regarding the latter, several researchers have investigated the behaviour of such filters in contact with internally unstable soils and severe clogging and flow rate reductions of soil-geotextile filter systems have been observed in several cases. This paper presents a study on the prediction of boundary values for hydraulic properties of nonwoven geotextile filters in cohesionless internally unstable soils. A broad survey on results of filtration tests present in the literature was carried out for the development of a database for the study. The results obtained show that significant reductions in soil-geotextile system permeability coefficient and flow rate may occur independent on the type of test carried out, quite often as a consequence of poor hydraulic behaviour of the soil rather than geotextile filter clogging. The study has identified the level of importance of relevant parameters to assess potential malfunction of the soil-geotextile system and equations were developed to predict lower bound values and estimates of soil-geotextile system permeability coefficient for preliminary analyses.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.