IF 4.5 1区 农林科学 Q1 AGRONOMY European Journal of Agronomy Pub Date : 2024-12-17 DOI:10.1016/j.eja.2024.127477
Dashuai Wang, Minghu Zhao, Zhuolin Li, Sheng Xu, Xiaohu Wu, Xuan Ma, Xiaoguang Liu
{"title":"A survey of unmanned aerial vehicles and deep learning in precision agriculture","authors":"Dashuai Wang, Minghu Zhao, Zhuolin Li, Sheng Xu, Xiaohu Wu, Xuan Ma, Xiaoguang Liu","doi":"10.1016/j.eja.2024.127477","DOIUrl":null,"url":null,"abstract":"In the wake of significant advances in agronomy, biology, informatics, agricultural robots (Agri-robots), and artificial intelligence, modern agriculture is transforming from labor-intensive to data-driven mode. Precision agriculture (PA) is one of the most practical solutions for bridging the crop yield gap by performing the right treatments in the right place and at the right time. As a rising star among Agri-robots, unmanned aerial vehicles (UAVs) equipped with high-resolution onboard sensors and dedicated application systems are playing an increasingly vital role in collecting multi-scale agricultural information and implementing site-specific treatment. In this process, a large number of images are produced. However, considerable effort is required to extract high-value information from the explosively growing number of images. Over the past decade, deep learning (DL) has demonstrated unparalleled advantages in agricultural analytics, such as crop/weed classification, biotic/abiotic stress detection, crop growth monitoring, yield prediction, natural disaster assessment, etc. The combination of UAVs and DL is of great significance for agricultural information acquisition, processing, analysis, decision-making, and deployment. With the rapid development of UAVs, DL, and PA, this work firstly introduces the key components of PA, UAVs, and DL, respectively, and summarizes their major research progress. Subsequently, we focus on the successful applications of UAVs and DL in PA. Furthermore, based on our extensive literature survey, their current challenges and future development trends are sorted out. Ultimately, we hope this survey can draw more attention to the novel applications of UAVs and DL in PA among multidisciplinary scientists around the world and inspire more exciting and practical studies.","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"195 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.eja.2024.127477","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

随着农艺学、生物学、信息学、农业机器人(Agri-robots)和人工智能的长足发展,现代农业正在从劳动密集型向数据驱动型转变。精准农业(PA)是缩小作物产量差距的最实用解决方案之一,它能在正确的时间和正确的地点进行正确的处理。作为农业机器人中的后起之秀,配备高分辨率机载传感器和专用应用系统的无人机(UAV)在收集多尺度农业信息和实施特定地点处理方面发挥着越来越重要的作用。在此过程中,会产生大量图像。然而,要从爆炸式增长的图像中提取高价值信息,需要付出大量努力。在过去十年中,深度学习(DL)在农业分析领域展现出了无与伦比的优势,例如作物/杂草分类、生物/非生物胁迫检测、作物生长监测、产量预测、自然灾害评估等。无人机与 DL 的结合对于农业信息的获取、处理、分析、决策和部署具有重要意义。随着无人机、DL 和 PA 的快速发展,本文首先分别介绍了 PA、无人机和 DL 的关键组成部分,并总结了它们的主要研究进展。随后,我们重点介绍了无人机和 DL 在 PA 中的成功应用。此外,我们还基于广泛的文献调查,梳理了它们当前面临的挑战和未来的发展趋势。最终,我们希望这份调查报告能引起全球多学科科学家对无人机和 DL 在 PA 中的新型应用的更多关注,并激发更多激动人心的实用研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey of unmanned aerial vehicles and deep learning in precision agriculture
In the wake of significant advances in agronomy, biology, informatics, agricultural robots (Agri-robots), and artificial intelligence, modern agriculture is transforming from labor-intensive to data-driven mode. Precision agriculture (PA) is one of the most practical solutions for bridging the crop yield gap by performing the right treatments in the right place and at the right time. As a rising star among Agri-robots, unmanned aerial vehicles (UAVs) equipped with high-resolution onboard sensors and dedicated application systems are playing an increasingly vital role in collecting multi-scale agricultural information and implementing site-specific treatment. In this process, a large number of images are produced. However, considerable effort is required to extract high-value information from the explosively growing number of images. Over the past decade, deep learning (DL) has demonstrated unparalleled advantages in agricultural analytics, such as crop/weed classification, biotic/abiotic stress detection, crop growth monitoring, yield prediction, natural disaster assessment, etc. The combination of UAVs and DL is of great significance for agricultural information acquisition, processing, analysis, decision-making, and deployment. With the rapid development of UAVs, DL, and PA, this work firstly introduces the key components of PA, UAVs, and DL, respectively, and summarizes their major research progress. Subsequently, we focus on the successful applications of UAVs and DL in PA. Furthermore, based on our extensive literature survey, their current challenges and future development trends are sorted out. Ultimately, we hope this survey can draw more attention to the novel applications of UAVs and DL in PA among multidisciplinary scientists around the world and inspire more exciting and practical studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Agronomy
European Journal of Agronomy 农林科学-农艺学
CiteScore
8.30
自引率
7.70%
发文量
187
审稿时长
4.5 months
期刊介绍: The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics: crop physiology crop production and management including irrigation, fertilization and soil management agroclimatology and modelling plant-soil relationships crop quality and post-harvest physiology farming and cropping systems agroecosystems and the environment crop-weed interactions and management organic farming horticultural crops papers from the European Society for Agronomy bi-annual meetings In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.
期刊最新文献
Combining modelling and experiment to quantify light interception and inter row variability on intercropped soybean in strip intercropping The synergistic effect of variety improvement and alternate wetting and drying irrigation on yield, water use efficiency and lodging resistance in rice Analysing variations in flowering time based on the dynamics of chill and heat accumulation during the fulfilment of cultivar-specific chill requirements in apricot Temporal pattern of biomass partitioning to apical ear in maize plant hierarchies under contrasting resource availabilities Ensuring sustainable crop production when yield gaps are small: A data-driven integrated assessment for wheat farms in Northwest India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1