基于有限元分析的增材制造工艺参数优化

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED Finite Elements in Analysis and Design Pub Date : 2025-02-01 DOI:10.1016/j.finel.2024.104282
Jingyi Wang, Panayiotis Papadopoulos
{"title":"基于有限元分析的增材制造工艺参数优化","authors":"Jingyi Wang,&nbsp;Panayiotis Papadopoulos","doi":"10.1016/j.finel.2024.104282","DOIUrl":null,"url":null,"abstract":"<div><div>A design optimization framework is proposed for process parameters in additive manufacturing. A finite element approximation of the coupled thermomechanical model is used to simulate the fused deposition of heated material and compute the objective function for each analysis. Both gradient-based and gradient-free optimization methods are developed. The gradient-based approach, which results in a balance law-constrained optimization problem, requires sensitivities computed from the fully discretized finite element model. These sensitivities are derived and subsequently applied to a projected gradient-descent algorithm. For the gradient-free approach, two distinct algorithms are proposed: a search algorithm based on local variations and a Bayesian optimization algorithm using a Gaussian process. Two design optimization examples are considered in order to illustrate the effectiveness of these approaches and explore the range of their usefulness.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"244 ","pages":"Article 104282"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element analysis-enabled optimization of process parameters in additive manufacturing\",\"authors\":\"Jingyi Wang,&nbsp;Panayiotis Papadopoulos\",\"doi\":\"10.1016/j.finel.2024.104282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A design optimization framework is proposed for process parameters in additive manufacturing. A finite element approximation of the coupled thermomechanical model is used to simulate the fused deposition of heated material and compute the objective function for each analysis. Both gradient-based and gradient-free optimization methods are developed. The gradient-based approach, which results in a balance law-constrained optimization problem, requires sensitivities computed from the fully discretized finite element model. These sensitivities are derived and subsequently applied to a projected gradient-descent algorithm. For the gradient-free approach, two distinct algorithms are proposed: a search algorithm based on local variations and a Bayesian optimization algorithm using a Gaussian process. Two design optimization examples are considered in order to illustrate the effectiveness of these approaches and explore the range of their usefulness.</div></div>\",\"PeriodicalId\":56133,\"journal\":{\"name\":\"Finite Elements in Analysis and Design\",\"volume\":\"244 \",\"pages\":\"Article 104282\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Elements in Analysis and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168874X24001768\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001768","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对增材制造中的工艺参数提出了一个设计优化框架。耦合热机械模型的有限元近似用于模拟加热材料的熔融沉积,并计算每次分析的目标函数。开发了基于梯度和无梯度的优化方法。基于梯度的方法会产生平衡定律约束的优化问题,需要从完全离散化的有限元模型中计算出敏感度。推导出这些敏感度后,将其应用于投影梯度-后裔算法。对于无梯度方法,提出了两种不同的算法:一种是基于局部变化的搜索算法,另一种是使用高斯过程的贝叶斯优化算法。为了说明这些方法的有效性并探索其实用范围,我们考虑了两个设计优化实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite element analysis-enabled optimization of process parameters in additive manufacturing
A design optimization framework is proposed for process parameters in additive manufacturing. A finite element approximation of the coupled thermomechanical model is used to simulate the fused deposition of heated material and compute the objective function for each analysis. Both gradient-based and gradient-free optimization methods are developed. The gradient-based approach, which results in a balance law-constrained optimization problem, requires sensitivities computed from the fully discretized finite element model. These sensitivities are derived and subsequently applied to a projected gradient-descent algorithm. For the gradient-free approach, two distinct algorithms are proposed: a search algorithm based on local variations and a Bayesian optimization algorithm using a Gaussian process. Two design optimization examples are considered in order to illustrate the effectiveness of these approaches and explore the range of their usefulness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
期刊最新文献
Application of zonal Reduced-Order-Modeling to tire rolling simulation An enhanced single Gaussian point continuum finite element formulation using automatic differentiation Robust multi-physical-material topology optimization with thermal-self-weight uncertain loads Sequential sensor placement for damage detection under frequency-domain dynamics An assumed enhanced strain finite element formulation for modeling hydraulic fracture growth in a thermoporoelastic medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1