改进的不同代码大小的上界

IF 1 2区 数学 Q1 MATHEMATICS Combinatorica Pub Date : 2024-12-18 DOI:10.1007/s00493-024-00130-2
Siddharth Bhandari, Abhishek Khetan
{"title":"改进的不同代码大小的上界","authors":"Siddharth Bhandari, Abhishek Khetan","doi":"10.1007/s00493-024-00130-2","DOIUrl":null,"url":null,"abstract":"<p>A subset <span>\\(\\mathcal {C}\\subseteq \\{0,1,2\\}^n\\)</span> is said to be a <i>trifferent</i> code (of block length <i>n</i>) if for every three distinct codewords <span>\\(x,y, z \\in \\mathcal {C}\\)</span>, there is a coordinate <span>\\(i\\in \\{1,2,\\ldots ,n\\}\\)</span> where they all differ, that is, <span>\\(\\{x(i),y(i),z(i)\\}\\)</span> is same as <span>\\(\\{0,1,2\\}\\)</span>. Let <i>T</i>(<i>n</i>) denote the size of the largest trifferent code of block length <i>n</i>. Understanding the asymptotic behavior of <i>T</i>(<i>n</i>) is closely related to determining the zero-error capacity of the (3/2)-channel defined by Elias (IEEE Trans Inform Theory 34(5):1070–1074, 1988), and is a long-standing open problem in the area. Elias had shown that <span>\\(T(n)\\le 2\\times (3/2)^n\\)</span> and prior to our work the best upper bound was <span>\\(T(n)\\le 0.6937 \\times (3/2)^n\\)</span> due to Kurz (Example Counterexample 5:100139, 2024). We improve this bound to <span>\\(T(n)\\le c \\times n^{-2/5}\\times (3/2)^n\\)</span> where <i>c</i> is an absolute constant.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"36 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Upper Bound for the Size of a Trifferent Code\",\"authors\":\"Siddharth Bhandari, Abhishek Khetan\",\"doi\":\"10.1007/s00493-024-00130-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A subset <span>\\\\(\\\\mathcal {C}\\\\subseteq \\\\{0,1,2\\\\}^n\\\\)</span> is said to be a <i>trifferent</i> code (of block length <i>n</i>) if for every three distinct codewords <span>\\\\(x,y, z \\\\in \\\\mathcal {C}\\\\)</span>, there is a coordinate <span>\\\\(i\\\\in \\\\{1,2,\\\\ldots ,n\\\\}\\\\)</span> where they all differ, that is, <span>\\\\(\\\\{x(i),y(i),z(i)\\\\}\\\\)</span> is same as <span>\\\\(\\\\{0,1,2\\\\}\\\\)</span>. Let <i>T</i>(<i>n</i>) denote the size of the largest trifferent code of block length <i>n</i>. Understanding the asymptotic behavior of <i>T</i>(<i>n</i>) is closely related to determining the zero-error capacity of the (3/2)-channel defined by Elias (IEEE Trans Inform Theory 34(5):1070–1074, 1988), and is a long-standing open problem in the area. Elias had shown that <span>\\\\(T(n)\\\\le 2\\\\times (3/2)^n\\\\)</span> and prior to our work the best upper bound was <span>\\\\(T(n)\\\\le 0.6937 \\\\times (3/2)^n\\\\)</span> due to Kurz (Example Counterexample 5:100139, 2024). We improve this bound to <span>\\\\(T(n)\\\\le c \\\\times n^{-2/5}\\\\times (3/2)^n\\\\)</span> where <i>c</i> is an absolute constant.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00130-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00130-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果对于每三个不同的编码词(x,y、z)中,有一个坐标(i/in \{1,2,\ldots ,n/})它们都不同,也就是说,({x(i),y(i),z(i))与({0,1,2})相同。了解 T(n) 的渐近行为与确定 Elias 定义的 (3/2)-channel 的零误码容量密切相关(IEEE Trans Inform Theory 34(5):1070-1074, 1988),这也是该领域一个长期未决的问题。埃利亚斯证明了(T(n))是(3/2)^n()的2倍,而在我们的研究之前,库尔兹(Example Counterexample 5:100139, 2024)提出的最佳上界是(T(n))是(3/2)^n()的0.6937倍。我们将这个界限改进为 \(T(n)\le c \times n^{-2/5}\times (3/2)^n\) 其中 c 是一个绝对常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Upper Bound for the Size of a Trifferent Code

A subset \(\mathcal {C}\subseteq \{0,1,2\}^n\) is said to be a trifferent code (of block length n) if for every three distinct codewords \(x,y, z \in \mathcal {C}\), there is a coordinate \(i\in \{1,2,\ldots ,n\}\) where they all differ, that is, \(\{x(i),y(i),z(i)\}\) is same as \(\{0,1,2\}\). Let T(n) denote the size of the largest trifferent code of block length n. Understanding the asymptotic behavior of T(n) is closely related to determining the zero-error capacity of the (3/2)-channel defined by Elias (IEEE Trans Inform Theory 34(5):1070–1074, 1988), and is a long-standing open problem in the area. Elias had shown that \(T(n)\le 2\times (3/2)^n\) and prior to our work the best upper bound was \(T(n)\le 0.6937 \times (3/2)^n\) due to Kurz (Example Counterexample 5:100139, 2024). We improve this bound to \(T(n)\le c \times n^{-2/5}\times (3/2)^n\) where c is an absolute constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
期刊最新文献
Constructing New Geometries: A Generalized Approach to Halving for Hypertopes Uniacute Spherical Codes How Balanced Can Permutations Be? The Number of Colorings of the Middle Layers of the Hamming Cube Chiral Extensions of Regular Toroids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1