{"title":"Mechanical Performance of Extruded Functionally Graded Fiber-Reinforced Mortar with Targeted Fiber Injection","authors":"Rashed Alarrak, Alexander S. Brand","doi":"10.1016/j.cemconcomp.2024.105896","DOIUrl":null,"url":null,"abstract":"This research investigated the mechanical performance of Functionally Graded Fiber-Reinforced Concrete (FG-FRC) produced <em>via</em> extrusion with a targeted fiber injection. Flexural toughness was assessed using a modified ASTM C1609, and fracture properties were analyzed through implementation of the two-parameter fracture model. The study introduced an innovative targeted fiber injection technique using a conveyor system, tailored for the integration of high-stiffness steel fibers into the mortar prior to extrusion. This method permits the use of fibers in more extrusion systems, since the fibers cannot jam in the pump. The research utilized digital image correlation to observe the full displacement field, allowing for an in-depth examination of crack propagation and strain localization. Additionally, X-ray computed tomography was employed to analyze fiber dosage and distribution within the FG-FRC layers. Results indicated that the targeted fiber injection method facilitated effective fiber distribution within FG-FRC layers, leading to enhanced mechanical performance through fiber dosage’s optimization.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2024.105896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究调查了通过定向纤维注入挤压法生产的功能级配纤维增强混凝土(FG-FRC)的机械性能。采用修改后的 ASTM C1609 评估了挠曲韧性,并通过实施双参数断裂模型分析了断裂性能。研究采用了一种创新的定向纤维注射技术,该技术使用输送系统,专门用于在挤压之前将高刚度钢纤维整合到砂浆中。这种方法允许在更多的挤压系统中使用纤维,因为纤维不会卡在泵中。该研究利用数字图像相关技术观察整个位移场,从而深入研究裂纹扩展和应变定位。此外,还采用了 X 射线计算机断层扫描技术来分析 FG-FRC 层内的纤维用量和分布情况。结果表明,有针对性的纤维注入方法促进了纤维在 FG-FRC 层内的有效分布,通过优化纤维用量提高了机械性能。
Mechanical Performance of Extruded Functionally Graded Fiber-Reinforced Mortar with Targeted Fiber Injection
This research investigated the mechanical performance of Functionally Graded Fiber-Reinforced Concrete (FG-FRC) produced via extrusion with a targeted fiber injection. Flexural toughness was assessed using a modified ASTM C1609, and fracture properties were analyzed through implementation of the two-parameter fracture model. The study introduced an innovative targeted fiber injection technique using a conveyor system, tailored for the integration of high-stiffness steel fibers into the mortar prior to extrusion. This method permits the use of fibers in more extrusion systems, since the fibers cannot jam in the pump. The research utilized digital image correlation to observe the full displacement field, allowing for an in-depth examination of crack propagation and strain localization. Additionally, X-ray computed tomography was employed to analyze fiber dosage and distribution within the FG-FRC layers. Results indicated that the targeted fiber injection method facilitated effective fiber distribution within FG-FRC layers, leading to enhanced mechanical performance through fiber dosage’s optimization.