Louis Kontschak, Oliver Gruschke, Lena Trapp, Hatice Nur Baser, Neil MacKinnon, Philippe Rychen, Hermann Nirschl, Gisela Guthausen
{"title":"不同长度尺度离子交换树脂上的磁共振成像","authors":"Louis Kontschak, Oliver Gruschke, Lena Trapp, Hatice Nur Baser, Neil MacKinnon, Philippe Rychen, Hermann Nirschl, Gisela Guthausen","doi":"10.1002/aic.18659","DOIUrl":null,"url":null,"abstract":"Ion exchange resins were studied on different length scales by magnetic resonance imaging (MRI) with the focus on their interactions with nanoparticles (NP) and molecular clusters. On the length scale of resin beds (bed diameters <20 mm), the behavior of NP and of molecular clusters was shown to depend on the kind of ion exchange resin and nanoscale moiety. The kinetics of absorption and penetration into the resin beads was quantified on a smaller length scale of a stack of resin beads (sample with an outer diameter of 1.7 mm). Finally, using an MRI μ-coil (3D spatial resolution ≥8 μm), adsorption of superparamagnetic NP on individual resin beads was observed via the magnetic field disturbance characteristic for magnetic dipoles. As a result, this allows the detection of NP (diameter ≤100 nm) by MRI on much larger length scales of several micrometers.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"86 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRI on ion exchange resins at different length scales\",\"authors\":\"Louis Kontschak, Oliver Gruschke, Lena Trapp, Hatice Nur Baser, Neil MacKinnon, Philippe Rychen, Hermann Nirschl, Gisela Guthausen\",\"doi\":\"10.1002/aic.18659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ion exchange resins were studied on different length scales by magnetic resonance imaging (MRI) with the focus on their interactions with nanoparticles (NP) and molecular clusters. On the length scale of resin beds (bed diameters <20 mm), the behavior of NP and of molecular clusters was shown to depend on the kind of ion exchange resin and nanoscale moiety. The kinetics of absorption and penetration into the resin beads was quantified on a smaller length scale of a stack of resin beads (sample with an outer diameter of 1.7 mm). Finally, using an MRI μ-coil (3D spatial resolution ≥8 μm), adsorption of superparamagnetic NP on individual resin beads was observed via the magnetic field disturbance characteristic for magnetic dipoles. As a result, this allows the detection of NP (diameter ≤100 nm) by MRI on much larger length scales of several micrometers.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18659\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18659","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
MRI on ion exchange resins at different length scales
Ion exchange resins were studied on different length scales by magnetic resonance imaging (MRI) with the focus on their interactions with nanoparticles (NP) and molecular clusters. On the length scale of resin beds (bed diameters <20 mm), the behavior of NP and of molecular clusters was shown to depend on the kind of ion exchange resin and nanoscale moiety. The kinetics of absorption and penetration into the resin beads was quantified on a smaller length scale of a stack of resin beads (sample with an outer diameter of 1.7 mm). Finally, using an MRI μ-coil (3D spatial resolution ≥8 μm), adsorption of superparamagnetic NP on individual resin beads was observed via the magnetic field disturbance characteristic for magnetic dipoles. As a result, this allows the detection of NP (diameter ≤100 nm) by MRI on much larger length scales of several micrometers.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.