Xue-Li Cao, Tian Tian, Yong Bai, Chun Cui, Cong Luo, Jiang-Shan Xing, Chuan-Yu Chen, Lili Zhao, Shi-Peng Sun
{"title":"反应位桥接纳米纤维网络的广谱耐腐蚀纳滤膜","authors":"Xue-Li Cao, Tian Tian, Yong Bai, Chun Cui, Cong Luo, Jiang-Shan Xing, Chuan-Yu Chen, Lili Zhao, Shi-Peng Sun","doi":"10.1002/aic.18699","DOIUrl":null,"url":null,"abstract":"Traditional nanofiltration membranes often struggle to maintain stability in harsh environments due to issues like swelling, chemical bond dissociation, and polymer chain creep. Fluoropolymers like poly(ethylene-chlorotrifluoroethylene) (ECTFE) are promising substrate candidates for broad-spectrum corrosion-resistant nanofiltration (CRNF) membranes, but their solvent insolubility and hydrophobicity present significant processing challenges. This study harnesses the electrospinnability and abundant reactive sites of polyvinyl alcohol to create a reactive site-bridged nanofibrous network. This network provides reactive sites to decorate the hydrophobic ECTFE substrate and bridges the molecular selective layer through aldolization, Schiff base reactions, and esterification. The resulting robust thin-film nanofibrous composite membranes exhibit high rejection rates for small molecular dyes under a variety of harsh conditions, including exposure to 10 wt% H<sub>2</sub>SO<sub>4</sub>, 1 M NaOH, ethanol, <i>N</i>,<i>N</i>-dimethylformamide, <i>N</i>-methylpyrrolidone, and 80°C solutions. This work paves the way for designing next-generation broad-spectrum CRNF membranes, enhancing their applicability in diverse harsh environments.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"28 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broad-spectrum corrosion-resistant nanofiltration membranes via reactive site-bridged nanofibrous network\",\"authors\":\"Xue-Li Cao, Tian Tian, Yong Bai, Chun Cui, Cong Luo, Jiang-Shan Xing, Chuan-Yu Chen, Lili Zhao, Shi-Peng Sun\",\"doi\":\"10.1002/aic.18699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional nanofiltration membranes often struggle to maintain stability in harsh environments due to issues like swelling, chemical bond dissociation, and polymer chain creep. Fluoropolymers like poly(ethylene-chlorotrifluoroethylene) (ECTFE) are promising substrate candidates for broad-spectrum corrosion-resistant nanofiltration (CRNF) membranes, but their solvent insolubility and hydrophobicity present significant processing challenges. This study harnesses the electrospinnability and abundant reactive sites of polyvinyl alcohol to create a reactive site-bridged nanofibrous network. This network provides reactive sites to decorate the hydrophobic ECTFE substrate and bridges the molecular selective layer through aldolization, Schiff base reactions, and esterification. The resulting robust thin-film nanofibrous composite membranes exhibit high rejection rates for small molecular dyes under a variety of harsh conditions, including exposure to 10 wt% H<sub>2</sub>SO<sub>4</sub>, 1 M NaOH, ethanol, <i>N</i>,<i>N</i>-dimethylformamide, <i>N</i>-methylpyrrolidone, and 80°C solutions. This work paves the way for designing next-generation broad-spectrum CRNF membranes, enhancing their applicability in diverse harsh environments.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18699\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18699","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Broad-spectrum corrosion-resistant nanofiltration membranes via reactive site-bridged nanofibrous network
Traditional nanofiltration membranes often struggle to maintain stability in harsh environments due to issues like swelling, chemical bond dissociation, and polymer chain creep. Fluoropolymers like poly(ethylene-chlorotrifluoroethylene) (ECTFE) are promising substrate candidates for broad-spectrum corrosion-resistant nanofiltration (CRNF) membranes, but their solvent insolubility and hydrophobicity present significant processing challenges. This study harnesses the electrospinnability and abundant reactive sites of polyvinyl alcohol to create a reactive site-bridged nanofibrous network. This network provides reactive sites to decorate the hydrophobic ECTFE substrate and bridges the molecular selective layer through aldolization, Schiff base reactions, and esterification. The resulting robust thin-film nanofibrous composite membranes exhibit high rejection rates for small molecular dyes under a variety of harsh conditions, including exposure to 10 wt% H2SO4, 1 M NaOH, ethanol, N,N-dimethylformamide, N-methylpyrrolidone, and 80°C solutions. This work paves the way for designing next-generation broad-spectrum CRNF membranes, enhancing their applicability in diverse harsh environments.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.