Melvia Carinne Mejía Vázquez, Wilson Bernal*, Angel Christian Gómez Téllez, Jaquelina Camacho Cáceres, Diana Marcela Montoya Montoya*, Mauricio Pacio and Hailin Hu,
{"title":"用于LED应用的MAPbBr3量子点的合成、制造和表征:一个简单的实验室实践","authors":"Melvia Carinne Mejía Vázquez, Wilson Bernal*, Angel Christian Gómez Téllez, Jaquelina Camacho Cáceres, Diana Marcela Montoya Montoya*, Mauricio Pacio and Hailin Hu, ","doi":"10.1021/acs.jchemed.4c0013910.1021/acs.jchemed.4c00139","DOIUrl":null,"url":null,"abstract":"<p >Currently, perovskites are one of the most explored frontier topics in research and industry due to their exceptional properties that make them a candidate for a wide range of applications, such as solar cells, sensors, and light emitting diodes (LEDs). On the other hand, one of the pedagogical problems is the lack of laboratory practices that can help students to relate the basic concepts of chemistry and physics with the fabrication and characterization process of an electronic device. In this work, a laboratory practice is proposed for undergraduate and postgraduate students in natural sciences and engineering to show an easy route of synthesis and characterization of the MAPbBr<sub>3</sub> perovskite quantum dots (PQDs) and their application in LEDs. The step-by-step Ligand-Assisted Re-Precipitation (LARP) method is described for synthesis of luminescent efficient PQDs. A spin-coating method is used to fabricate active layers of perovskite LEDs under ambient conditions with a eutectic field metal as the top contact to avoid the use of expensive high vacuum systems. The positive feedback of the students toward this laboratory practice demonstrates the effective learning on the concept–application relationship through the fabrication and characterization of perovskite LEDs.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 12","pages":"5413–5421 5413–5421"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Fabrication, and Characterization of MAPbBr3 Quantum Dots for LED Applications: An Easy Laboratory Practice\",\"authors\":\"Melvia Carinne Mejía Vázquez, Wilson Bernal*, Angel Christian Gómez Téllez, Jaquelina Camacho Cáceres, Diana Marcela Montoya Montoya*, Mauricio Pacio and Hailin Hu, \",\"doi\":\"10.1021/acs.jchemed.4c0013910.1021/acs.jchemed.4c00139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Currently, perovskites are one of the most explored frontier topics in research and industry due to their exceptional properties that make them a candidate for a wide range of applications, such as solar cells, sensors, and light emitting diodes (LEDs). On the other hand, one of the pedagogical problems is the lack of laboratory practices that can help students to relate the basic concepts of chemistry and physics with the fabrication and characterization process of an electronic device. In this work, a laboratory practice is proposed for undergraduate and postgraduate students in natural sciences and engineering to show an easy route of synthesis and characterization of the MAPbBr<sub>3</sub> perovskite quantum dots (PQDs) and their application in LEDs. The step-by-step Ligand-Assisted Re-Precipitation (LARP) method is described for synthesis of luminescent efficient PQDs. A spin-coating method is used to fabricate active layers of perovskite LEDs under ambient conditions with a eutectic field metal as the top contact to avoid the use of expensive high vacuum systems. The positive feedback of the students toward this laboratory practice demonstrates the effective learning on the concept–application relationship through the fabrication and characterization of perovskite LEDs.</p>\",\"PeriodicalId\":43,\"journal\":{\"name\":\"Journal of Chemical Education\",\"volume\":\"101 12\",\"pages\":\"5413–5421 5413–5421\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Education\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00139\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00139","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, Fabrication, and Characterization of MAPbBr3 Quantum Dots for LED Applications: An Easy Laboratory Practice
Currently, perovskites are one of the most explored frontier topics in research and industry due to their exceptional properties that make them a candidate for a wide range of applications, such as solar cells, sensors, and light emitting diodes (LEDs). On the other hand, one of the pedagogical problems is the lack of laboratory practices that can help students to relate the basic concepts of chemistry and physics with the fabrication and characterization process of an electronic device. In this work, a laboratory practice is proposed for undergraduate and postgraduate students in natural sciences and engineering to show an easy route of synthesis and characterization of the MAPbBr3 perovskite quantum dots (PQDs) and their application in LEDs. The step-by-step Ligand-Assisted Re-Precipitation (LARP) method is described for synthesis of luminescent efficient PQDs. A spin-coating method is used to fabricate active layers of perovskite LEDs under ambient conditions with a eutectic field metal as the top contact to avoid the use of expensive high vacuum systems. The positive feedback of the students toward this laboratory practice demonstrates the effective learning on the concept–application relationship through the fabrication and characterization of perovskite LEDs.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.