Mohammed Tahmid, Hyuck Joo Choi, Sai Tarun Ganapavarapu, Joseph Scott and Marta C. Hatzell*,
{"title":"电渗析法浓缩废氮肥料","authors":"Mohammed Tahmid, Hyuck Joo Choi, Sai Tarun Ganapavarapu, Joseph Scott and Marta C. Hatzell*, ","doi":"10.1021/acs.estlett.4c0059510.1021/acs.estlett.4c00595","DOIUrl":null,"url":null,"abstract":"<p >Recovery of nitrogen from wastewater presents a unique opportunity to valorize waste and contribute to a more circular nitrogen economy. However, dilute solution separations are challenging for most state-of-the-art separations technologies. This often results in technologies having low concentration factors that result in low-value products (e.g., < 1 wt % N). Here, we demonstrate how a cascading electrodialysis system combined with a hollow fiber membrane contactor (ED+HFMC) system can achieve efficient recovery of ammonia from simulated centralized animal feeding operation (CAFO) wastewater. The integrated system achieved an overall concentration factor of ∼200× (∼40× in ED and ∼5× in HFMC). This resulted in a ∼10 wt % NH<sub>4</sub><sup>+</sup>-N fertilizer product. The specific energy consumption (SEC) for the three stages of the ED was 1.89–6.14 kWh/kg NH<sub>4</sub><sup>+</sup>-N, which is lower than that of the Haber–Bosch process (8.9–19.3 kWh/kg N). Operating costs were <$0.90/kg NH<sub>4</sub><sup>+</sup>-N for each of the electrodialysis stages and NH<sub>3</sub> stripping. This integrated ED+HFMC system holds promise for the recovery of ammonia from dilute feedstreams as the ED+HFMC achieves high concentration factors and has low energy demand.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 12","pages":"1413–1419 1413–1419"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00595","citationCount":"0","resultStr":"{\"title\":\"Concentrating Nitrogen Waste with Electrodialysis for Fertilizer Production\",\"authors\":\"Mohammed Tahmid, Hyuck Joo Choi, Sai Tarun Ganapavarapu, Joseph Scott and Marta C. Hatzell*, \",\"doi\":\"10.1021/acs.estlett.4c0059510.1021/acs.estlett.4c00595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recovery of nitrogen from wastewater presents a unique opportunity to valorize waste and contribute to a more circular nitrogen economy. However, dilute solution separations are challenging for most state-of-the-art separations technologies. This often results in technologies having low concentration factors that result in low-value products (e.g., < 1 wt % N). Here, we demonstrate how a cascading electrodialysis system combined with a hollow fiber membrane contactor (ED+HFMC) system can achieve efficient recovery of ammonia from simulated centralized animal feeding operation (CAFO) wastewater. The integrated system achieved an overall concentration factor of ∼200× (∼40× in ED and ∼5× in HFMC). This resulted in a ∼10 wt % NH<sub>4</sub><sup>+</sup>-N fertilizer product. The specific energy consumption (SEC) for the three stages of the ED was 1.89–6.14 kWh/kg NH<sub>4</sub><sup>+</sup>-N, which is lower than that of the Haber–Bosch process (8.9–19.3 kWh/kg N). Operating costs were <$0.90/kg NH<sub>4</sub><sup>+</sup>-N for each of the electrodialysis stages and NH<sub>3</sub> stripping. This integrated ED+HFMC system holds promise for the recovery of ammonia from dilute feedstreams as the ED+HFMC achieves high concentration factors and has low energy demand.</p>\",\"PeriodicalId\":37,\"journal\":{\"name\":\"Environmental Science & Technology Letters Environ.\",\"volume\":\"11 12\",\"pages\":\"1413–1419 1413–1419\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00595\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science & Technology Letters Environ.\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00595\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00595","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Concentrating Nitrogen Waste with Electrodialysis for Fertilizer Production
Recovery of nitrogen from wastewater presents a unique opportunity to valorize waste and contribute to a more circular nitrogen economy. However, dilute solution separations are challenging for most state-of-the-art separations technologies. This often results in technologies having low concentration factors that result in low-value products (e.g., < 1 wt % N). Here, we demonstrate how a cascading electrodialysis system combined with a hollow fiber membrane contactor (ED+HFMC) system can achieve efficient recovery of ammonia from simulated centralized animal feeding operation (CAFO) wastewater. The integrated system achieved an overall concentration factor of ∼200× (∼40× in ED and ∼5× in HFMC). This resulted in a ∼10 wt % NH4+-N fertilizer product. The specific energy consumption (SEC) for the three stages of the ED was 1.89–6.14 kWh/kg NH4+-N, which is lower than that of the Haber–Bosch process (8.9–19.3 kWh/kg N). Operating costs were <$0.90/kg NH4+-N for each of the electrodialysis stages and NH3 stripping. This integrated ED+HFMC system holds promise for the recovery of ammonia from dilute feedstreams as the ED+HFMC achieves high concentration factors and has low energy demand.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.