可持续合成稀土金属钨酸盐(REWO,RE = Ce、SM、Gd)用于 4-硝基甲苯的电化学检测

Sakthivel Kogularasu, Balasubramanian Sriram, Sea-Fue Wang, Wan-Ching Lin, Yen-Yi Lee, Yung-Lung Chen* and Guo-Ping Chang-Chien*, 
{"title":"可持续合成稀土金属钨酸盐(REWO,RE = Ce、SM、Gd)用于 4-硝基甲苯的电化学检测","authors":"Sakthivel Kogularasu,&nbsp;Balasubramanian Sriram,&nbsp;Sea-Fue Wang,&nbsp;Wan-Ching Lin,&nbsp;Yen-Yi Lee,&nbsp;Yung-Lung Chen* and Guo-Ping Chang-Chien*,&nbsp;","doi":"10.1021/acsengineeringau.4c0002410.1021/acsengineeringau.4c00024","DOIUrl":null,"url":null,"abstract":"<p >In this study, the synthesis and application of rare earth tungstates Ce<sub>4</sub>W<sub>9</sub>O<sub>33</sub> (CeW), Sm<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> (SmW), and Gd<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> (GdW) for the electrochemical detection of 4-nitrotoluene were investigated. The nanoparticles were synthesized using a deep eutectic solvent (DES)-assisted solvothermal method, a technique known for its precision and reproducibility. It resulted in materials with high thermal stability, excellent catalytic activity, and enhanced electronic properties. The synthesized CeW, SmW, and GdW were employed to modify screen-printed carbon electrodes (SPCEs), a widely used and well-established method in the field, which were then characterized using various techniques. Electrochemical performance was evaluated through cyclic voltammetry, differential pulse voltammetry, and amperometric (<i>i-t</i>) responses, all of which are standard methods in electrochemical analysis. The modified electrodes exhibited superior electrochemical behavior compared to bare SPCEs, with CeW/SPCE showing the highest reduction peak current for 4-nitrotoluene detection. The linear range for detection was found to be for DPV= 0.01–576 μM and for <i>i-t</i> = 0.001–306 μM, with a limit of detection of DPV = 0.034 μM and <i>i-t</i> = 0.012 μM. The sensors demonstrated excellent selectivity, reproducibility, and stability, with minimal interference from other substances commonly found in environmental samples. Real-world applicability was confirmed by testing the modified electrodes in the river and tap water samples spiked with 4-nitrotoluene. The CeW/SPCE sensor showed rapid and sensitive response in both matrices, highlighting its potential for environmental monitoring. The robust performance of CeW, SmW, and GdW-modified electrodes underscores their suitability for practical applications in detecting nitrophenols, contributing to effective environmental monitoring and pollution control. This research has the potential to inspire further advancements in the field of electrochemical detection and environmental monitoring.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 6","pages":"533–544 533–544"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00024","citationCount":"0","resultStr":"{\"title\":\"Sustainable Synthesis of Rare Earth Metal Tungstates (REWO, RE = Ce, SM, Gd) for Electrochemical Detection of 4-Nitrotoluene\",\"authors\":\"Sakthivel Kogularasu,&nbsp;Balasubramanian Sriram,&nbsp;Sea-Fue Wang,&nbsp;Wan-Ching Lin,&nbsp;Yen-Yi Lee,&nbsp;Yung-Lung Chen* and Guo-Ping Chang-Chien*,&nbsp;\",\"doi\":\"10.1021/acsengineeringau.4c0002410.1021/acsengineeringau.4c00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, the synthesis and application of rare earth tungstates Ce<sub>4</sub>W<sub>9</sub>O<sub>33</sub> (CeW), Sm<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> (SmW), and Gd<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub> (GdW) for the electrochemical detection of 4-nitrotoluene were investigated. The nanoparticles were synthesized using a deep eutectic solvent (DES)-assisted solvothermal method, a technique known for its precision and reproducibility. It resulted in materials with high thermal stability, excellent catalytic activity, and enhanced electronic properties. The synthesized CeW, SmW, and GdW were employed to modify screen-printed carbon electrodes (SPCEs), a widely used and well-established method in the field, which were then characterized using various techniques. Electrochemical performance was evaluated through cyclic voltammetry, differential pulse voltammetry, and amperometric (<i>i-t</i>) responses, all of which are standard methods in electrochemical analysis. The modified electrodes exhibited superior electrochemical behavior compared to bare SPCEs, with CeW/SPCE showing the highest reduction peak current for 4-nitrotoluene detection. The linear range for detection was found to be for DPV= 0.01–576 μM and for <i>i-t</i> = 0.001–306 μM, with a limit of detection of DPV = 0.034 μM and <i>i-t</i> = 0.012 μM. The sensors demonstrated excellent selectivity, reproducibility, and stability, with minimal interference from other substances commonly found in environmental samples. Real-world applicability was confirmed by testing the modified electrodes in the river and tap water samples spiked with 4-nitrotoluene. The CeW/SPCE sensor showed rapid and sensitive response in both matrices, highlighting its potential for environmental monitoring. The robust performance of CeW, SmW, and GdW-modified electrodes underscores their suitability for practical applications in detecting nitrophenols, contributing to effective environmental monitoring and pollution control. This research has the potential to inspire further advancements in the field of electrochemical detection and environmental monitoring.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":\"4 6\",\"pages\":\"533–544 533–544\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了稀土钨酸盐Ce4W9O33 (CeW)、Sm2(WO4)3 (SmW)和Gd2(WO4)3 (GdW)的合成及其在4-硝基甲苯电化学检测中的应用。纳米颗粒是用深共晶溶剂(DES)辅助溶剂热法合成的,该技术以其精度和重复性而闻名。它使材料具有高的热稳定性、优异的催化活性和增强的电子性能。将合成的CeW, SmW和GdW用于修饰丝网印刷碳电极(spce),这是一种广泛使用且成熟的方法,然后使用各种技术对其进行表征。电化学性能通过循环伏安法、差分脉冲伏安法和电流(i-t)响应来评估,这些都是电化学分析的标准方法。与未修饰的SPCE相比,修饰电极表现出更好的电化学行为,CeW/SPCE在4-硝基甲苯检测中显示出最高的还原峰电流。在DPV= 0.01 ~ 576 μM和i-t = 0.001 ~ 306 μM的线性范围内,DPV= 0.034 μM和i-t = 0.012 μM的检出限。该传感器表现出优异的选择性、可重复性和稳定性,与环境样品中常见的其他物质的干扰最小。通过在含有4-硝基甲苯的河流和自来水样品中测试改良电极,证实了其在现实世界中的适用性。CeW/SPCE传感器在两种基质中均表现出快速灵敏的反应,突出了其在环境监测方面的潜力。CeW, SmW和gdw修饰电极的强大性能强调了它们在检测硝基酚方面的实际应用适用性,有助于有效的环境监测和污染控制。这项研究有可能激发电化学检测和环境监测领域的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable Synthesis of Rare Earth Metal Tungstates (REWO, RE = Ce, SM, Gd) for Electrochemical Detection of 4-Nitrotoluene

In this study, the synthesis and application of rare earth tungstates Ce4W9O33 (CeW), Sm2(WO4)3 (SmW), and Gd2(WO4)3 (GdW) for the electrochemical detection of 4-nitrotoluene were investigated. The nanoparticles were synthesized using a deep eutectic solvent (DES)-assisted solvothermal method, a technique known for its precision and reproducibility. It resulted in materials with high thermal stability, excellent catalytic activity, and enhanced electronic properties. The synthesized CeW, SmW, and GdW were employed to modify screen-printed carbon electrodes (SPCEs), a widely used and well-established method in the field, which were then characterized using various techniques. Electrochemical performance was evaluated through cyclic voltammetry, differential pulse voltammetry, and amperometric (i-t) responses, all of which are standard methods in electrochemical analysis. The modified electrodes exhibited superior electrochemical behavior compared to bare SPCEs, with CeW/SPCE showing the highest reduction peak current for 4-nitrotoluene detection. The linear range for detection was found to be for DPV= 0.01–576 μM and for i-t = 0.001–306 μM, with a limit of detection of DPV = 0.034 μM and i-t = 0.012 μM. The sensors demonstrated excellent selectivity, reproducibility, and stability, with minimal interference from other substances commonly found in environmental samples. Real-world applicability was confirmed by testing the modified electrodes in the river and tap water samples spiked with 4-nitrotoluene. The CeW/SPCE sensor showed rapid and sensitive response in both matrices, highlighting its potential for environmental monitoring. The robust performance of CeW, SmW, and GdW-modified electrodes underscores their suitability for practical applications in detecting nitrophenols, contributing to effective environmental monitoring and pollution control. This research has the potential to inspire further advancements in the field of electrochemical detection and environmental monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Engineering Au
ACS Engineering Au 化学工程技术-
自引率
0.00%
发文量
0
期刊介绍: )ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)
期刊最新文献
Issue Editorial Masthead Issue Publication Information ACS Engineering Au’s Special Issue on “Insights, Innovations, and Intensification” 2024 Model-Based Scale-Up of a Homogeneously Catalyzed Sonogashira Coupling Reaction in a 3D Printed Continuous-Flow Reactor Emerging Trends in Nonisocyanate Polyurethane Foams: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1