多风电场快速频率支持的两级分布式共识控制

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-09-25 DOI:10.1109/TSTE.2024.3468371
Kangyi Sun;Hongyu Zhou;Wei Yao;Yongxin Xiong;Yahan Yao;Jinyu Wen
{"title":"多风电场快速频率支持的两级分布式共识控制","authors":"Kangyi Sun;Hongyu Zhou;Wei Yao;Yongxin Xiong;Yahan Yao;Jinyu Wen","doi":"10.1109/TSTE.2024.3468371","DOIUrl":null,"url":null,"abstract":"The neighboring wind farms have great frequency support potential. The wind turbine generators (WTGs) in these wind farms are influenced by wake effects and have different frequency support capabilities. In order to fully utilize the WTGs' support capabilities under different operating states, this paper proposes a two-level distributed consensus (TLDC) control to cooperate all the WTGs. Level I is leader-follower control, which is equipped within the wind farms. Level II is leaderless control which is used among the wind farms. This method is able to assign different values of power commands to different WTGs in the system to achieve better frequency support effect and stability. Based on MATLAB/Simulink and Opal-RT real-time simulation platforms, the two-area power system and Guangshui system (100% renewable energy power system) are analyzed, respectively. Simulation results show that the proposed TLDC method has a better effect compared with other frequency support methods. It can also flexibly respond to communication interruptions and delays.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"530-545"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Level Distributed Consensus Control of Multiple Wind Farms for Fast Frequency Support\",\"authors\":\"Kangyi Sun;Hongyu Zhou;Wei Yao;Yongxin Xiong;Yahan Yao;Jinyu Wen\",\"doi\":\"10.1109/TSTE.2024.3468371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neighboring wind farms have great frequency support potential. The wind turbine generators (WTGs) in these wind farms are influenced by wake effects and have different frequency support capabilities. In order to fully utilize the WTGs' support capabilities under different operating states, this paper proposes a two-level distributed consensus (TLDC) control to cooperate all the WTGs. Level I is leader-follower control, which is equipped within the wind farms. Level II is leaderless control which is used among the wind farms. This method is able to assign different values of power commands to different WTGs in the system to achieve better frequency support effect and stability. Based on MATLAB/Simulink and Opal-RT real-time simulation platforms, the two-area power system and Guangshui system (100% renewable energy power system) are analyzed, respectively. Simulation results show that the proposed TLDC method has a better effect compared with other frequency support methods. It can also flexibly respond to communication interruptions and delays.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 1\",\"pages\":\"530-545\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10694712/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10694712/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

邻近的风电场有很大的频率支持潜力。这些风电场中的风力发电机受到尾流效应的影响,具有不同的频率支持能力。为了充分发挥各wtg在不同运行状态下的支持能力,本文提出了一种两级分布式共识(TLDC)控制,实现各wtg之间的协作。第一级是领导者-追随者控制,这是风电场内部配备的。第二级是无领导控制,用于风电场之间。该方法可以为系统中不同的wtg分配不同的功率命令值,以获得更好的频率支持效果和稳定性。基于MATLAB/Simulink和Opal-RT实时仿真平台,分别对两区电力系统和广水系统(100%可再生能源电力系统)进行了分析。仿真结果表明,与其他频率支持方法相比,所提出的TLDC方法具有更好的效果。它还可以灵活地应对通信中断和延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-Level Distributed Consensus Control of Multiple Wind Farms for Fast Frequency Support
The neighboring wind farms have great frequency support potential. The wind turbine generators (WTGs) in these wind farms are influenced by wake effects and have different frequency support capabilities. In order to fully utilize the WTGs' support capabilities under different operating states, this paper proposes a two-level distributed consensus (TLDC) control to cooperate all the WTGs. Level I is leader-follower control, which is equipped within the wind farms. Level II is leaderless control which is used among the wind farms. This method is able to assign different values of power commands to different WTGs in the system to achieve better frequency support effect and stability. Based on MATLAB/Simulink and Opal-RT real-time simulation platforms, the two-area power system and Guangshui system (100% renewable energy power system) are analyzed, respectively. Simulation results show that the proposed TLDC method has a better effect compared with other frequency support methods. It can also flexibly respond to communication interruptions and delays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Table of Contents IEEE Collabratec Get Published in the New IEEE Open Access Journal of Power and Energy Share Your Preprint Research with the World! IEEE Transactions on Sustainable Energy Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1