线缆通道行为驱动的电阻式终端技术综述

Changjae Moon;Minsoo Choi;Myungguk Lee;Byungsub Kim
{"title":"线缆通道行为驱动的电阻式终端技术综述","authors":"Changjae Moon;Minsoo Choi;Myungguk Lee;Byungsub Kim","doi":"10.1109/OJSSCS.2024.3503546","DOIUrl":null,"url":null,"abstract":"From the perspective of channel behaviors, we review several design techniques of resistive termination for wireline applications. Termination impedances strongly affect the channel behaviors. Their impacts vary a lot depending on the types of interconnects and the circuits. Therefore, termination impedances must be appropriately designed for the target applications. In this article, first, we explain an intuitive analytical transfer function model of wireline channels. The model allows designers to easily and intuitively understand the impacts of the termination resistances on the channel behaviors. Second, we review various resistive termination techniques for LC-dominant channels and discuss their design tradeoffs. Especially, we theoretically explain the relaxed impedance matching technique, which allows designers to violate impedance matching for design improvements at the cost of a negligible penalty in signal integrity. Third, we review various resistive termination techniques for RC-dominant channels and their design tradeoffs. We especially emphasize and theoretically explain why and how the design tradeoffs by resistive terminations in RC-dominant channels are different from the ones in LC-dominant channels.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"305-317"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10758758","citationCount":"0","resultStr":"{\"title\":\"Review on Resistive Termination Techniques Driven by Wireline Channel Behaviors\",\"authors\":\"Changjae Moon;Minsoo Choi;Myungguk Lee;Byungsub Kim\",\"doi\":\"10.1109/OJSSCS.2024.3503546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the perspective of channel behaviors, we review several design techniques of resistive termination for wireline applications. Termination impedances strongly affect the channel behaviors. Their impacts vary a lot depending on the types of interconnects and the circuits. Therefore, termination impedances must be appropriately designed for the target applications. In this article, first, we explain an intuitive analytical transfer function model of wireline channels. The model allows designers to easily and intuitively understand the impacts of the termination resistances on the channel behaviors. Second, we review various resistive termination techniques for LC-dominant channels and discuss their design tradeoffs. Especially, we theoretically explain the relaxed impedance matching technique, which allows designers to violate impedance matching for design improvements at the cost of a negligible penalty in signal integrity. Third, we review various resistive termination techniques for RC-dominant channels and their design tradeoffs. We especially emphasize and theoretically explain why and how the design tradeoffs by resistive terminations in RC-dominant channels are different from the ones in LC-dominant channels.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"4 \",\"pages\":\"305-317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10758758\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10758758/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758758/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on Resistive Termination Techniques Driven by Wireline Channel Behaviors
From the perspective of channel behaviors, we review several design techniques of resistive termination for wireline applications. Termination impedances strongly affect the channel behaviors. Their impacts vary a lot depending on the types of interconnects and the circuits. Therefore, termination impedances must be appropriately designed for the target applications. In this article, first, we explain an intuitive analytical transfer function model of wireline channels. The model allows designers to easily and intuitively understand the impacts of the termination resistances on the channel behaviors. Second, we review various resistive termination techniques for LC-dominant channels and discuss their design tradeoffs. Especially, we theoretically explain the relaxed impedance matching technique, which allows designers to violate impedance matching for design improvements at the cost of a negligible penalty in signal integrity. Third, we review various resistive termination techniques for RC-dominant channels and their design tradeoffs. We especially emphasize and theoretically explain why and how the design tradeoffs by resistive terminations in RC-dominant channels are different from the ones in LC-dominant channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 70-MHz Bandwidth Time-Interleaved Noise-Shaping SAR-Assisted Delta-Sigma ADC With Digital Cross-Coupling in 28-nm CMOS A −11.6-dBm OMA Sensitivity 0.55-pJ/bit 40-Gb/s Optical Receiver Designed Using a 2-Port-Parameter-Based Design Methodology A Monolithic Microring Modulator-Based Transmitter With a Multiobjective Thermal Controller Recent Advances in Ultrahigh-Speed Wireline Receivers With ADC-DSP-Based Equalizers High-Bandwidth Chiplet Interconnects for Advanced Packaging Technologies in AI/ML Applications: Challenges and Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1