基于 SISO 传递函数的成网储能系统交互建模与稳定性分析

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-09-30 DOI:10.1109/TSTE.2024.3471801
Kezan Zhang;Mengxuan Shi;Xia Chen;Dejun Shao;Youping Xu;Yin Chen
{"title":"基于 SISO 传递函数的成网储能系统交互建模与稳定性分析","authors":"Kezan Zhang;Mengxuan Shi;Xia Chen;Dejun Shao;Youping Xu;Yin Chen","doi":"10.1109/TSTE.2024.3471801","DOIUrl":null,"url":null,"abstract":"With the rapid expansion of photovoltaic (PV), grid-forming energy storage systems (GFM-ESS) have been widely employed for inertia response and voltage support to enhance the dynamic characteristics. Converters with different synchronization methods represent significant differences in dynamic behavior. The interactions between grid-forming (GFM) and grid-following (GFL) devices with multi-time scale control may lead to small-signal instability in hybrid systems. This paper investigates a grid-connected system comprising a grid-forming energy storage system and a grid-following PV system (GFL-PV). Based on single-input-single-output (SISO) transfer functions, a dynamic interaction model for the PV-ESS system is established. Combining the open-loop transfer functions of full-loop and sub-loop, the proposed model reveals how GFM-ESS modifies the dynamic characteristics of GFL-PV under weak grid conditions. Subsequently, the impact of different control loops and parameters on the small-signal stability of the system is analyzed. The stability margins of both devices are also compared through the SISO model. Electromagnetic transient simulation results in MATLAB/Simulink and experiments validate the effectiveness of the proposed models and analyses.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"573-587"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction Modeling and Stability Analysis of Grid-Forming Energy Storage System Based on SISO Transfer Functions\",\"authors\":\"Kezan Zhang;Mengxuan Shi;Xia Chen;Dejun Shao;Youping Xu;Yin Chen\",\"doi\":\"10.1109/TSTE.2024.3471801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid expansion of photovoltaic (PV), grid-forming energy storage systems (GFM-ESS) have been widely employed for inertia response and voltage support to enhance the dynamic characteristics. Converters with different synchronization methods represent significant differences in dynamic behavior. The interactions between grid-forming (GFM) and grid-following (GFL) devices with multi-time scale control may lead to small-signal instability in hybrid systems. This paper investigates a grid-connected system comprising a grid-forming energy storage system and a grid-following PV system (GFL-PV). Based on single-input-single-output (SISO) transfer functions, a dynamic interaction model for the PV-ESS system is established. Combining the open-loop transfer functions of full-loop and sub-loop, the proposed model reveals how GFM-ESS modifies the dynamic characteristics of GFL-PV under weak grid conditions. Subsequently, the impact of different control loops and parameters on the small-signal stability of the system is analyzed. The stability margins of both devices are also compared through the SISO model. Electromagnetic transient simulation results in MATLAB/Simulink and experiments validate the effectiveness of the proposed models and analyses.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"16 1\",\"pages\":\"573-587\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10700987/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10700987/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着光伏发电(PV)的快速发展,并网储能系统(GFM-ESS)被广泛应用于惯性响应和电压支撑,以增强其动态特性。采用不同同步方式的变换器在动态行为上存在显著差异。在多时间尺度控制下,网格形成装置和网格跟随装置之间的相互作用可能导致混合系统的小信号不稳定性。本文研究了一种并网系统,包括并网储能系统和随网光伏系统(GFL-PV)。基于单输入-单输出传递函数,建立了PV-ESS系统的动态交互模型。该模型结合全环和子环的开环传递函数,揭示了弱电网条件下GFM-ESS对GFL-PV动态特性的影响。分析了不同控制回路和控制参数对系统小信号稳定性的影响。通过SISO模型对两种器件的稳定裕度进行了比较。在MATLAB/Simulink中进行了电磁瞬变仿真和实验,验证了所提模型和分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction Modeling and Stability Analysis of Grid-Forming Energy Storage System Based on SISO Transfer Functions
With the rapid expansion of photovoltaic (PV), grid-forming energy storage systems (GFM-ESS) have been widely employed for inertia response and voltage support to enhance the dynamic characteristics. Converters with different synchronization methods represent significant differences in dynamic behavior. The interactions between grid-forming (GFM) and grid-following (GFL) devices with multi-time scale control may lead to small-signal instability in hybrid systems. This paper investigates a grid-connected system comprising a grid-forming energy storage system and a grid-following PV system (GFL-PV). Based on single-input-single-output (SISO) transfer functions, a dynamic interaction model for the PV-ESS system is established. Combining the open-loop transfer functions of full-loop and sub-loop, the proposed model reveals how GFM-ESS modifies the dynamic characteristics of GFL-PV under weak grid conditions. Subsequently, the impact of different control loops and parameters on the small-signal stability of the system is analyzed. The stability margins of both devices are also compared through the SISO model. Electromagnetic transient simulation results in MATLAB/Simulink and experiments validate the effectiveness of the proposed models and analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Table of Contents IEEE Collabratec Get Published in the New IEEE Open Access Journal of Power and Energy Share Your Preprint Research with the World! IEEE Transactions on Sustainable Energy Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1