基于 B2C 电子商务模式和生命周期评估框架的观光电动车供应链环境影响研究

Q2 Energy Energy Informatics Pub Date : 2024-12-18 DOI:10.1186/s42162-024-00446-9
Wei Xia, Chunjun Luo, Li Cai, Juan Yan, Xiaojiang Zhou, Yuan Zhang
{"title":"基于 B2C 电子商务模式和生命周期评估框架的观光电动车供应链环境影响研究","authors":"Wei Xia,&nbsp;Chunjun Luo,&nbsp;Li Cai,&nbsp;Juan Yan,&nbsp;Xiaojiang Zhou,&nbsp;Yuan Zhang","doi":"10.1186/s42162-024-00446-9","DOIUrl":null,"url":null,"abstract":"<div><p>Studying the impact of the electric vehicle supply chain on the environment is crucial for determining the future development direction of the industry. We have developed a method for evaluating the impact of supply chains on the environment based on a lifecycle framework. This method innovatively seeks the connection between the lifecycle process of physical products and the supply chain, and organizes the environmental impact assessment factors of the electric vehicle supply chain from three aspects: physical resources, power energy, and waste emissions, in order to construct an LCA fuzzy comprehensive evaluation model for the electric vehicle supply chain. For the first time, the research method of transforming qualitative analysis into quantitative data was introduced into the life cycle environmental impact assessment, and empirical research was conducted using the supply chain of sightseeing electric vehicles as an example. The results indicate that the scrapping stage of electric vehicles has the most severe impact on the environment. Strengthening research on strategies or technologies for handling waste batteries and automobiles is key to improving the environmental performance of the supply chain. This method breaks through the requirements and limitations of traditional life cycle assessment methods on data sources and parameters, avoids large-scale calculations that cannot be separated from subjective factors in traditional methods, simplifies the process of supply chain environmental impact assessment, shortens the evaluation time, and improves the efficiency of environmental impact assessment. It is more practical and has good application prospects.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00446-9","citationCount":"0","resultStr":"{\"title\":\"Environmental impact study of the sightseeing electric vehicle supply chain based on the B2C e-commerce model and LCA framework\",\"authors\":\"Wei Xia,&nbsp;Chunjun Luo,&nbsp;Li Cai,&nbsp;Juan Yan,&nbsp;Xiaojiang Zhou,&nbsp;Yuan Zhang\",\"doi\":\"10.1186/s42162-024-00446-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studying the impact of the electric vehicle supply chain on the environment is crucial for determining the future development direction of the industry. We have developed a method for evaluating the impact of supply chains on the environment based on a lifecycle framework. This method innovatively seeks the connection between the lifecycle process of physical products and the supply chain, and organizes the environmental impact assessment factors of the electric vehicle supply chain from three aspects: physical resources, power energy, and waste emissions, in order to construct an LCA fuzzy comprehensive evaluation model for the electric vehicle supply chain. For the first time, the research method of transforming qualitative analysis into quantitative data was introduced into the life cycle environmental impact assessment, and empirical research was conducted using the supply chain of sightseeing electric vehicles as an example. The results indicate that the scrapping stage of electric vehicles has the most severe impact on the environment. Strengthening research on strategies or technologies for handling waste batteries and automobiles is key to improving the environmental performance of the supply chain. This method breaks through the requirements and limitations of traditional life cycle assessment methods on data sources and parameters, avoids large-scale calculations that cannot be separated from subjective factors in traditional methods, simplifies the process of supply chain environmental impact assessment, shortens the evaluation time, and improves the efficiency of environmental impact assessment. It is more practical and has good application prospects.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00446-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00446-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00446-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

研究电动汽车供应链对环境的影响对于确定行业未来发展方向至关重要。我们已经开发了一种基于生命周期框架来评估供应链对环境影响的方法。该方法创新性地寻找实体产品生命周期过程与供应链之间的联系,从实体资源、动力能源、废弃物排放三个方面组织电动汽车供应链的环境影响评价因素,构建电动汽车供应链的LCA模糊综合评价模型。首次将定性分析转化为定量数据的研究方法引入到全生命周期环境影响评价中,并以观光电动汽车供应链为例进行实证研究。结果表明,电动汽车报废阶段对环境的影响最为严重。加强对废电池和废汽车处理策略或技术的研究是改善供应链环境绩效的关键。该方法突破了传统生命周期评价方法对数据源和参数的要求和局限性,避免了传统方法中无法脱离主观因素的大规模计算,简化了供应链环境影响评价的流程,缩短了评价时间,提高了环境影响评价的效率。具有较强的实用性,具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental impact study of the sightseeing electric vehicle supply chain based on the B2C e-commerce model and LCA framework

Studying the impact of the electric vehicle supply chain on the environment is crucial for determining the future development direction of the industry. We have developed a method for evaluating the impact of supply chains on the environment based on a lifecycle framework. This method innovatively seeks the connection between the lifecycle process of physical products and the supply chain, and organizes the environmental impact assessment factors of the electric vehicle supply chain from three aspects: physical resources, power energy, and waste emissions, in order to construct an LCA fuzzy comprehensive evaluation model for the electric vehicle supply chain. For the first time, the research method of transforming qualitative analysis into quantitative data was introduced into the life cycle environmental impact assessment, and empirical research was conducted using the supply chain of sightseeing electric vehicles as an example. The results indicate that the scrapping stage of electric vehicles has the most severe impact on the environment. Strengthening research on strategies or technologies for handling waste batteries and automobiles is key to improving the environmental performance of the supply chain. This method breaks through the requirements and limitations of traditional life cycle assessment methods on data sources and parameters, avoids large-scale calculations that cannot be separated from subjective factors in traditional methods, simplifies the process of supply chain environmental impact assessment, shortens the evaluation time, and improves the efficiency of environmental impact assessment. It is more practical and has good application prospects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1