利用薇甘菊装饰的 MnO2 纳米粒子在阳光驱动下光催化降解工业染料

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2024-12-17 DOI:10.1186/s11671-024-04160-z
Mahi Chaudhary, Chetan Kumar, Sapna Raghav, Medha Panwar, Shivam Pandey, Ritu Painuli
{"title":"利用薇甘菊装饰的 MnO2 纳米粒子在阳光驱动下光催化降解工业染料","authors":"Mahi Chaudhary,&nbsp;Chetan Kumar,&nbsp;Sapna Raghav,&nbsp;Medha Panwar,&nbsp;Shivam Pandey,&nbsp;Ritu Painuli","doi":"10.1186/s11671-024-04160-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a unique, fast, and environmentally friendly approach for synthesizing MnO<sub>2</sub> nanoparticles (MnO<sub>2</sub> NPs) utilizing <i>Withania somnifera</i> (Ashwagandha) extract. The formation of nanoparticles was indicated by a color change from dark purple to dark brown within 10 min and validated through techniques including UV–Vis spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), and Energy Dispersive X-ray (EDX). Bromocresol green and Bromothymol blue were established as standards for assessing the photocatalytic efficiency of the synthesized nanoparticles. The synthesized nanocatalyst exhibited remarkable removal efficiency upon sunlight exposure, achieving 92% for Bromothymol blue and 95% for Bromocresol green within a duration of 1 h. The influence of variables including duration, photocatalyst dosage, and photodegradation kinetics was carefully examined to assess the efficacy of the created photocatalyst. The devised procedure is environmentally benign, facile to execute, and does not necessitate any chemical agents or advanced instrumentation for synthesis. This presents a new opportunity for the advancement of green photocatalysts, which may serve as an outstanding nanomaterial for wastewater clean-up.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04160-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Sunlight-driven photocatalytic degradation of industrial dyes using Withania somnifera decorated MnO2 nanoparticles\",\"authors\":\"Mahi Chaudhary,&nbsp;Chetan Kumar,&nbsp;Sapna Raghav,&nbsp;Medha Panwar,&nbsp;Shivam Pandey,&nbsp;Ritu Painuli\",\"doi\":\"10.1186/s11671-024-04160-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a unique, fast, and environmentally friendly approach for synthesizing MnO<sub>2</sub> nanoparticles (MnO<sub>2</sub> NPs) utilizing <i>Withania somnifera</i> (Ashwagandha) extract. The formation of nanoparticles was indicated by a color change from dark purple to dark brown within 10 min and validated through techniques including UV–Vis spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), and Energy Dispersive X-ray (EDX). Bromocresol green and Bromothymol blue were established as standards for assessing the photocatalytic efficiency of the synthesized nanoparticles. The synthesized nanocatalyst exhibited remarkable removal efficiency upon sunlight exposure, achieving 92% for Bromothymol blue and 95% for Bromocresol green within a duration of 1 h. The influence of variables including duration, photocatalyst dosage, and photodegradation kinetics was carefully examined to assess the efficacy of the created photocatalyst. The devised procedure is environmentally benign, facile to execute, and does not necessitate any chemical agents or advanced instrumentation for synthesis. This presents a new opportunity for the advancement of green photocatalysts, which may serve as an outstanding nanomaterial for wastewater clean-up.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-024-04160-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-024-04160-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04160-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种独特、快速、环保的利用Withania somnifera (Ashwagandha)提取物合成二氧化锰纳米颗粒(MnO2 NPs)的方法。纳米颗粒的形成在10分钟内由深紫色变为深棕色,并通过紫外可见光谱、场发射扫描电子显微镜(FESEM)、傅里叶变换红外光谱(FTIR)和能量色散x射线(EDX)等技术进行了验证。以溴甲酚绿和溴百里酚蓝作为评价纳米粒子光催化效率的标准。合成的纳米催化剂在阳光照射下表现出显著的去除效率,在1小时内对溴百里酚蓝的去除效率达到92%,对溴甲酚绿的去除效率达到95%。我们仔细研究了持续时间、光催化剂用量和光降解动力学等变量的影响,以评估所制备的光催化剂的效果。所设计的程序对环境无害,易于执行,并且不需要任何化学试剂或先进的合成仪器。这为绿色光催化剂的发展提供了新的机遇,它可能成为一种出色的废水净化纳米材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sunlight-driven photocatalytic degradation of industrial dyes using Withania somnifera decorated MnO2 nanoparticles

This study presents a unique, fast, and environmentally friendly approach for synthesizing MnO2 nanoparticles (MnO2 NPs) utilizing Withania somnifera (Ashwagandha) extract. The formation of nanoparticles was indicated by a color change from dark purple to dark brown within 10 min and validated through techniques including UV–Vis spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), and Energy Dispersive X-ray (EDX). Bromocresol green and Bromothymol blue were established as standards for assessing the photocatalytic efficiency of the synthesized nanoparticles. The synthesized nanocatalyst exhibited remarkable removal efficiency upon sunlight exposure, achieving 92% for Bromothymol blue and 95% for Bromocresol green within a duration of 1 h. The influence of variables including duration, photocatalyst dosage, and photodegradation kinetics was carefully examined to assess the efficacy of the created photocatalyst. The devised procedure is environmentally benign, facile to execute, and does not necessitate any chemical agents or advanced instrumentation for synthesis. This presents a new opportunity for the advancement of green photocatalysts, which may serve as an outstanding nanomaterial for wastewater clean-up.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Effect of food-simulating liquids and polishing times on the color stability of microhybrid and nanohybrid resin composites Correction: Solid‑state hydrogen storage materials Systematic review of peptide nanoparticles for improved diabetes outcomes: insights and opportunities N-doped graphene oxide nanomaterial: synthesis and application as controlled-release of urea for advancement in modern agriculture Advances in macro-bioactive materials enhancing dentin bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1