{"title":"半规则网格条件下四阶椭圆方程的莫里有限元分析","authors":"Hiroki Ishizaka","doi":"10.21136/AM.2024.0103-24","DOIUrl":null,"url":null,"abstract":"<div><p>We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.</p></div>","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"69 6","pages":"769 - 805"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition\",\"authors\":\"Hiroki Ishizaka\",\"doi\":\"10.21136/AM.2024.0103-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.</p></div>\",\"PeriodicalId\":55505,\"journal\":{\"name\":\"Applications of Mathematics\",\"volume\":\"69 6\",\"pages\":\"769 - 805\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2024.0103-24\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2024.0103-24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition
We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.
期刊介绍:
Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering.
The main topics covered include:
- Mechanics of Solids;
- Fluid Mechanics;
- Electrical Engineering;
- Solutions of Differential and Integral Equations;
- Mathematical Physics;
- Optimization;
- Probability
Mathematical Statistics.
The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.