利用摄像机图像开发窄间隙热丝激光焊接的自动化和监控方法

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Welding in the World Pub Date : 2024-10-28 DOI:10.1007/s40194-024-01849-8
K. Marumoto, Y. Sato, A. Fujinaga, T. Takahashi, H. Yamamoto, M. Yamamoto
{"title":"利用摄像机图像开发窄间隙热丝激光焊接的自动化和监控方法","authors":"K. Marumoto,&nbsp;Y. Sato,&nbsp;A. Fujinaga,&nbsp;T. Takahashi,&nbsp;H. Yamamoto,&nbsp;M. Yamamoto","doi":"10.1007/s40194-024-01849-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an image-based method was developed for hot-wire laser narrow gap welding. The welding process was monitored based on image information processed using semantic segmentation, a method of classifying images by pixel. To control the welding position, an experimental system was configured that automatically follows the welding position by recognizing the position of the welding groove from the image during welding. In monitoring weld defects, a method was developed to predict the lack of fusion occurring on the wall surface using brightness information near the wall surface. For the lack of fusion occurring at the bottom of the groove, a defect detection method was developed by monitoring the molten pool shape using semantic segmentation. Defects were generated by intentionally reducing the laser power, and the defects were monitored from images taken during processing. In the unstable state where the laser power was reduced, the shape in front of the molten pool became unstable, and the occurrence of defects was monitored by capturing the shape change. In conclusion, this research made it possible to control and monitor the welding process with a single camera.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 1","pages":"269 - 280"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01849-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of automation and monitoring methods for narrow-gap hot-wire laser welding using camera images\",\"authors\":\"K. Marumoto,&nbsp;Y. Sato,&nbsp;A. Fujinaga,&nbsp;T. Takahashi,&nbsp;H. Yamamoto,&nbsp;M. Yamamoto\",\"doi\":\"10.1007/s40194-024-01849-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, an image-based method was developed for hot-wire laser narrow gap welding. The welding process was monitored based on image information processed using semantic segmentation, a method of classifying images by pixel. To control the welding position, an experimental system was configured that automatically follows the welding position by recognizing the position of the welding groove from the image during welding. In monitoring weld defects, a method was developed to predict the lack of fusion occurring on the wall surface using brightness information near the wall surface. For the lack of fusion occurring at the bottom of the groove, a defect detection method was developed by monitoring the molten pool shape using semantic segmentation. Defects were generated by intentionally reducing the laser power, and the defects were monitored from images taken during processing. In the unstable state where the laser power was reduced, the shape in front of the molten pool became unstable, and the occurrence of defects was monitored by capturing the shape change. In conclusion, this research made it possible to control and monitor the welding process with a single camera.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"69 1\",\"pages\":\"269 - 280\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40194-024-01849-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01849-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01849-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于图像的热丝激光窄间隙焊接方法。利用语义分割技术对图像信息进行处理,对焊接过程进行监控。为了控制焊接位置,设计了一个实验系统,通过在焊接过程中从图像中识别焊接坡口的位置,自动跟踪焊接位置。在焊缝缺陷监测中,提出了一种利用壁面附近的亮度信息预测壁面未熔合的方法。针对槽底未熔合的缺陷,提出了一种基于语义分割的熔池形状监测缺陷检测方法。通过有意降低激光功率产生缺陷,并从加工过程中拍摄的图像中监测缺陷。在激光功率降低的不稳定状态下,熔池前方的形状变得不稳定,通过捕捉形状变化来监测缺陷的发生。综上所述,本研究使单摄像机控制和监控焊接过程成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of automation and monitoring methods for narrow-gap hot-wire laser welding using camera images

In this study, an image-based method was developed for hot-wire laser narrow gap welding. The welding process was monitored based on image information processed using semantic segmentation, a method of classifying images by pixel. To control the welding position, an experimental system was configured that automatically follows the welding position by recognizing the position of the welding groove from the image during welding. In monitoring weld defects, a method was developed to predict the lack of fusion occurring on the wall surface using brightness information near the wall surface. For the lack of fusion occurring at the bottom of the groove, a defect detection method was developed by monitoring the molten pool shape using semantic segmentation. Defects were generated by intentionally reducing the laser power, and the defects were monitored from images taken during processing. In the unstable state where the laser power was reduced, the shape in front of the molten pool became unstable, and the occurrence of defects was monitored by capturing the shape change. In conclusion, this research made it possible to control and monitor the welding process with a single camera.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
期刊最新文献
Effect of ambient conditions in friction surfacing. Influence of surface integrity on short crack growth behavior in HFMI-treated welded joints Comparative study on microstructure characteristics and mechanical properties of dissimilar friction stir welded aluminum alloy using single and double rotating shoulder tools Assessing ferrite content in duplex stainless weld metal: WRC ‘92 predictions vs. practical measurements Strengthening and embrittlement mechanisms in laser-welded additively manufactured Inconel 718 superalloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1