模拟原行星盘上气体流的自由下落

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astronomy Reports Pub Date : 2024-12-18 DOI:10.1134/S1063772924700859
V. V. Grigoryev, T. V. Demidova
{"title":"模拟原行星盘上气体流的自由下落","authors":"V. V. Grigoryev,&nbsp;T. V. Demidova","doi":"10.1134/S1063772924700859","DOIUrl":null,"url":null,"abstract":"<p>The problem of the formation of exoplanets in inclined orbits relative to the equatorial plane of the parent star or the main plane of the protoplanetary disk can be solved by introducing a smaller inclined disk. However, the question of the nature of such an internal disk remains open. In the paper, we successfully tested the hypothesis about the formation of an inclined inner disk in a protoplanetary disk near a T Tau type star as a result of a gas stream falling on it. To test the hypothesis, three-dimensional gas-dynamic calculations were performed taking into account viscosity and thermal conductivity using the PLUTO package. In the course of the analysis of calculations, it was shown that a single intersection of the matter stream with the plane of the disk cannot ensure the formation of an inclined disk near the star, while a double intersection can. In addition, in the case of a retrograde fall of matter, the angle of inclination of the resulting inner disk is significantly greater. An analysis of the observational manifestations of this event was also carried out: the potential change in the brightness of the star, the distribution of optical thickness in angles, the evolution of the accretion rate. It is shown that the decrease in brightness can reach up to <span>\\({{5}^{m}}\\)</span>, taking into account scattered light, and such a decrease in brightness will last several decades. In addition, a sharp increase in the accretion rate by two orders of magnitude could potentially trigger an FU Ori-like outburst.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":"68 10","pages":"949 - 966"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of the Free Fall of a Gas Stream on a Protoplanetary Disk\",\"authors\":\"V. V. Grigoryev,&nbsp;T. V. Demidova\",\"doi\":\"10.1134/S1063772924700859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of the formation of exoplanets in inclined orbits relative to the equatorial plane of the parent star or the main plane of the protoplanetary disk can be solved by introducing a smaller inclined disk. However, the question of the nature of such an internal disk remains open. In the paper, we successfully tested the hypothesis about the formation of an inclined inner disk in a protoplanetary disk near a T Tau type star as a result of a gas stream falling on it. To test the hypothesis, three-dimensional gas-dynamic calculations were performed taking into account viscosity and thermal conductivity using the PLUTO package. In the course of the analysis of calculations, it was shown that a single intersection of the matter stream with the plane of the disk cannot ensure the formation of an inclined disk near the star, while a double intersection can. In addition, in the case of a retrograde fall of matter, the angle of inclination of the resulting inner disk is significantly greater. An analysis of the observational manifestations of this event was also carried out: the potential change in the brightness of the star, the distribution of optical thickness in angles, the evolution of the accretion rate. It is shown that the decrease in brightness can reach up to <span>\\\\({{5}^{m}}\\\\)</span>, taking into account scattered light, and such a decrease in brightness will last several decades. In addition, a sharp increase in the accretion rate by two orders of magnitude could potentially trigger an FU Ori-like outburst.</p>\",\"PeriodicalId\":55440,\"journal\":{\"name\":\"Astronomy Reports\",\"volume\":\"68 10\",\"pages\":\"949 - 966\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063772924700859\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772924700859","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of the Free Fall of a Gas Stream on a Protoplanetary Disk

The problem of the formation of exoplanets in inclined orbits relative to the equatorial plane of the parent star or the main plane of the protoplanetary disk can be solved by introducing a smaller inclined disk. However, the question of the nature of such an internal disk remains open. In the paper, we successfully tested the hypothesis about the formation of an inclined inner disk in a protoplanetary disk near a T Tau type star as a result of a gas stream falling on it. To test the hypothesis, three-dimensional gas-dynamic calculations were performed taking into account viscosity and thermal conductivity using the PLUTO package. In the course of the analysis of calculations, it was shown that a single intersection of the matter stream with the plane of the disk cannot ensure the formation of an inclined disk near the star, while a double intersection can. In addition, in the case of a retrograde fall of matter, the angle of inclination of the resulting inner disk is significantly greater. An analysis of the observational manifestations of this event was also carried out: the potential change in the brightness of the star, the distribution of optical thickness in angles, the evolution of the accretion rate. It is shown that the decrease in brightness can reach up to \({{5}^{m}}\), taking into account scattered light, and such a decrease in brightness will last several decades. In addition, a sharp increase in the accretion rate by two orders of magnitude could potentially trigger an FU Ori-like outburst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy Reports
Astronomy Reports 地学天文-天文与天体物理
CiteScore
1.40
自引率
20.00%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.
期刊最新文献
Effect of the Star Extreme Radiation Flux on the Structure of the Hydrogen–Helium Upper Atmosphere of Hot Jupiter Details of Modelling the Non-Stationary Thermal Structure of an Axially Symmetric Protoplanetary Disk Variations in the Orbital Periods of Eclipsing Binaries δLib and SXLyn Investigation of the Temporal Variations in Scattering and Dispersion Measure of Giant Radio Pulses in the Pulsar В0531+21 in the Crab Nebula at 111 MHz Frequency in 2002–2024 Measurement of Radio Emission Scattering Parameters in the Direction of Pulsars B0809+74, B0919+06, and B1133+16 with Ground-Space Interferometer RadioAstron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1