东莞市入海排污口溶解有机物三维荧光光谱特征及来源分析

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2024-12-18 DOI:10.1007/s11270-024-07689-y
Changzheng Wu, Jinquan Wan, Jinpeng Wang, Jinlan Cai, Xiuwen Ren, Yan Wang, Zhangqing Bi
{"title":"东莞市入海排污口溶解有机物三维荧光光谱特征及来源分析","authors":"Changzheng Wu,&nbsp;Jinquan Wan,&nbsp;Jinpeng Wang,&nbsp;Jinlan Cai,&nbsp;Xiuwen Ren,&nbsp;Yan Wang,&nbsp;Zhangqing Bi","doi":"10.1007/s11270-024-07689-y","DOIUrl":null,"url":null,"abstract":"<div><p>The composition and source analysis of dissolved organic matter (DOM) in sewage outfall into the sea is an effective means of pollutant traceability, which is of great significance to the ecological environment protection in coastal areas. This paper selects Dongguan, an important coastal industrial city in China’s Pearl River, for research. Water samples from 42 sewage outfalls into the sea were measured by three-dimensional fluorescence spectroscopy (3D-EEM). Combined with fluorescence characteristic parameters, similarity analysis and parallel factor analysis (PARAFAC), the spectral characteristics, DOM composition and source were analyzed. The average values of fluorescence parameters fluorescence index (FI), biological index (BIX) and humification index (HIX) were 1.80, 0.94 and 0.55, respectively. The overall PARAFAC analysis found that DOM in the sewage outfall of Dongguan was mainly composed of two fluorescent components, namely tyrosine-like (C1) and humus-like (C2), where tyrosine-like fluorescence was higher than humus-like. This indicates that DOM comes from both terrestrial and endogenous biological activities, but endogenous sources are the primary sources. The similarity analysis divided sewage outfalls into four categories, namely urban rainwater drainage characteristics, typical urban sewage, Jiulong paper-related wastewater and aquaculture water in fish ponds. At the same time, in the PARAFAC analysis, the fluorescence components of 14 urban rainwater outfalls were consistent with the overall analysis results. There are 3 effective parallel factor fluorescence components in 23 outfalls most likely to be contaminated by domestic sewage, namely tyrosine (C1) Humus-like (C2) and tryptophan (C3), C3 components in the characterization of the protein fluorescent tryptophan substance region appeared a strong response peak, belonging to the source pollution, consistent with similarity analysis results. This study suggests that the same source sewage outfalls should be classified management, strengthen the source tracing of sewage outfalls into the sea in neighboring cities, and build a collaborative pollution control system for river basins, estuaries and coastal.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional Fluorescence Spectrum Characteristics and Source Analysis of Dissolved Organic Matter in Sewage Outfall into the Sea of Dongguan\",\"authors\":\"Changzheng Wu,&nbsp;Jinquan Wan,&nbsp;Jinpeng Wang,&nbsp;Jinlan Cai,&nbsp;Xiuwen Ren,&nbsp;Yan Wang,&nbsp;Zhangqing Bi\",\"doi\":\"10.1007/s11270-024-07689-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The composition and source analysis of dissolved organic matter (DOM) in sewage outfall into the sea is an effective means of pollutant traceability, which is of great significance to the ecological environment protection in coastal areas. This paper selects Dongguan, an important coastal industrial city in China’s Pearl River, for research. Water samples from 42 sewage outfalls into the sea were measured by three-dimensional fluorescence spectroscopy (3D-EEM). Combined with fluorescence characteristic parameters, similarity analysis and parallel factor analysis (PARAFAC), the spectral characteristics, DOM composition and source were analyzed. The average values of fluorescence parameters fluorescence index (FI), biological index (BIX) and humification index (HIX) were 1.80, 0.94 and 0.55, respectively. The overall PARAFAC analysis found that DOM in the sewage outfall of Dongguan was mainly composed of two fluorescent components, namely tyrosine-like (C1) and humus-like (C2), where tyrosine-like fluorescence was higher than humus-like. This indicates that DOM comes from both terrestrial and endogenous biological activities, but endogenous sources are the primary sources. The similarity analysis divided sewage outfalls into four categories, namely urban rainwater drainage characteristics, typical urban sewage, Jiulong paper-related wastewater and aquaculture water in fish ponds. At the same time, in the PARAFAC analysis, the fluorescence components of 14 urban rainwater outfalls were consistent with the overall analysis results. There are 3 effective parallel factor fluorescence components in 23 outfalls most likely to be contaminated by domestic sewage, namely tyrosine (C1) Humus-like (C2) and tryptophan (C3), C3 components in the characterization of the protein fluorescent tryptophan substance region appeared a strong response peak, belonging to the source pollution, consistent with similarity analysis results. This study suggests that the same source sewage outfalls should be classified management, strengthen the source tracing of sewage outfalls into the sea in neighboring cities, and build a collaborative pollution control system for river basins, estuaries and coastal.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"236 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07689-y\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07689-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

入海污水排放口溶解性有机物(DOM)组成及来源分析是污染物溯源的有效手段,对沿海地区生态环境保护具有重要意义。本文选取中国珠江沿岸重要的沿海工业城市东莞作为研究对象。采用三维荧光光谱(3D-EEM)技术对42个入海污水口的水样进行了测量。结合荧光特征参数、相似度分析及平行因子分析(PARAFAC),对其光谱特征、DOM组成及来源进行分析。荧光指数(FI)、生物指数(BIX)和腐殖化指数(HIX)的平均值分别为1.80、0.94和0.55。整体PARAFAC分析发现,东莞市排污口DOM主要由酪氨酸样(C1)和腐殖质样(C2)两种荧光组分组成,其中酪氨酸样荧光高于腐殖质样荧光。这说明DOM既有陆地生物活动来源,也有内源性生物活动来源,但内源性来源是主要来源。相似度分析将污水出水口分为四类,即城市雨水排水特征、典型城市污水、九龙造纸相关废水和鱼塘养殖用水。同时,在PARAFAC分析中,14个城市雨水出水口的荧光成分与整体分析结果一致。在23个最可能被生活污水污染的出水口中存在3个有效的平行因子荧光组分,分别为酪氨酸(C1)、腐殖质样(C2)和色氨酸(C3), C3组分在表征色氨酸蛋白荧光物质区域出现强响应峰,属于污染源,与相似性分析结果一致。建议对同源污水进行分类管理,加强邻市入海污水源头溯源,构建流域、河口、沿海协同污染治理体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional Fluorescence Spectrum Characteristics and Source Analysis of Dissolved Organic Matter in Sewage Outfall into the Sea of Dongguan

The composition and source analysis of dissolved organic matter (DOM) in sewage outfall into the sea is an effective means of pollutant traceability, which is of great significance to the ecological environment protection in coastal areas. This paper selects Dongguan, an important coastal industrial city in China’s Pearl River, for research. Water samples from 42 sewage outfalls into the sea were measured by three-dimensional fluorescence spectroscopy (3D-EEM). Combined with fluorescence characteristic parameters, similarity analysis and parallel factor analysis (PARAFAC), the spectral characteristics, DOM composition and source were analyzed. The average values of fluorescence parameters fluorescence index (FI), biological index (BIX) and humification index (HIX) were 1.80, 0.94 and 0.55, respectively. The overall PARAFAC analysis found that DOM in the sewage outfall of Dongguan was mainly composed of two fluorescent components, namely tyrosine-like (C1) and humus-like (C2), where tyrosine-like fluorescence was higher than humus-like. This indicates that DOM comes from both terrestrial and endogenous biological activities, but endogenous sources are the primary sources. The similarity analysis divided sewage outfalls into four categories, namely urban rainwater drainage characteristics, typical urban sewage, Jiulong paper-related wastewater and aquaculture water in fish ponds. At the same time, in the PARAFAC analysis, the fluorescence components of 14 urban rainwater outfalls were consistent with the overall analysis results. There are 3 effective parallel factor fluorescence components in 23 outfalls most likely to be contaminated by domestic sewage, namely tyrosine (C1) Humus-like (C2) and tryptophan (C3), C3 components in the characterization of the protein fluorescent tryptophan substance region appeared a strong response peak, belonging to the source pollution, consistent with similarity analysis results. This study suggests that the same source sewage outfalls should be classified management, strengthen the source tracing of sewage outfalls into the sea in neighboring cities, and build a collaborative pollution control system for river basins, estuaries and coastal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Analysis and Evaluation of Potential Adsorbent for CO2 Capture in a CI Engine Exhaust: An Experimental Study Mesoporous Silica-Polyethyleneimine Composites as High-Capacity Adsorbents for CO2 Adsorption: Isotherm and Thermodynamic Analysis Toxicity Assessment of River Sediments Impacted by Open-Pit Coal Mining in Colombia Using Caenorhabditis elegans Combined Approach Using Soil and Fly Ash Analysis to Understand the Environmental Consequences of Coal Combustion in Thermal Power Stations in the City Advancements in Hybrid and Combined Biological Technologies for Treating Polluted Gases: A Comprehensive Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1