表面粗糙度对2mm球形颗粒材料剪切力学行为的影响

IF 2.4 3区 工程技术 Granular Matter Pub Date : 2024-12-19 DOI:10.1007/s10035-024-01497-1
Meng Miao, Fengyin Liu, Yu Yin, Yuqing Tang, Lijia Zhong
{"title":"表面粗糙度对2mm球形颗粒材料剪切力学行为的影响","authors":"Meng Miao,&nbsp;Fengyin Liu,&nbsp;Yu Yin,&nbsp;Yuqing Tang,&nbsp;Lijia Zhong","doi":"10.1007/s10035-024-01497-1","DOIUrl":null,"url":null,"abstract":"<div><p>Using glass beads as an ideal material analogous to soil particles makes it feasible to explore the effects of particle interactions on the mechanical behavior of the material. In this study, 2 mm high-precision spherical glass beads were selected as the raw material, and three test samples with varying surface roughness were produced using sandblasting technology. After quantifying the surface roughness of the particles, samples were prepared, and a series of laboratory triaxial consolidation drainage tests were conducted to investigate the shear behavior of particle materials with varying roughness levels. This investigation explores the effects of variations in particle surface roughness on the stress–strain characteristics, shear strength, critical state, and stick–slip behavior of triaxial samples. The experimental results indicate that an increase in particle surface roughness significantly raises the peak deviatoric stress, and the stress–strain curves predominantly exhibit strain softening behavior. Additionally, the slope of the critical state line increases, and the stick–slip behavior becomes less pronounced. The variation trend of the roughness index is similar to peak friction angle (<i>φ</i><sub>max</sub>), peak deviatoric stress growth rate, slope (k) of the critical state line, and the maximum deviatoric stress drop (Δ<sub>qmax</sub>) during stick–slip process.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of surface roughness on the shear mechanical behavior of 2 mm spherical particle materials\",\"authors\":\"Meng Miao,&nbsp;Fengyin Liu,&nbsp;Yu Yin,&nbsp;Yuqing Tang,&nbsp;Lijia Zhong\",\"doi\":\"10.1007/s10035-024-01497-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using glass beads as an ideal material analogous to soil particles makes it feasible to explore the effects of particle interactions on the mechanical behavior of the material. In this study, 2 mm high-precision spherical glass beads were selected as the raw material, and three test samples with varying surface roughness were produced using sandblasting technology. After quantifying the surface roughness of the particles, samples were prepared, and a series of laboratory triaxial consolidation drainage tests were conducted to investigate the shear behavior of particle materials with varying roughness levels. This investigation explores the effects of variations in particle surface roughness on the stress–strain characteristics, shear strength, critical state, and stick–slip behavior of triaxial samples. The experimental results indicate that an increase in particle surface roughness significantly raises the peak deviatoric stress, and the stress–strain curves predominantly exhibit strain softening behavior. Additionally, the slope of the critical state line increases, and the stick–slip behavior becomes less pronounced. The variation trend of the roughness index is similar to peak friction angle (<i>φ</i><sub>max</sub>), peak deviatoric stress growth rate, slope (k) of the critical state line, and the maximum deviatoric stress drop (Δ<sub>qmax</sub>) during stick–slip process.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01497-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01497-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用玻璃微珠作为类似土壤颗粒的理想材料,探索颗粒相互作用对材料力学行为的影响是可行的。本研究选取2mm高精度球形玻璃微珠为原料,采用喷砂技术制作了3个不同表面粗糙度的试样。在量化颗粒表面粗糙度后,制备样品,并进行一系列室内三轴固结排水试验,研究不同粗糙度颗粒材料的剪切行为。本研究探讨了颗粒表面粗糙度的变化对三轴试样的应力应变特性、剪切强度、临界状态和粘滑行为的影响。实验结果表明,颗粒表面粗糙度的增加显著提高了峰值偏应力,应力-应变曲线主要表现为应变软化行为。此外,临界状态线的斜率增大,黏滑行为变得不那么明显。黏滑过程中粗糙度指数的变化趋势与峰值摩擦角(φmax)、峰值偏应力增长率、临界状态线斜率(k)和最大偏应力降(Δqmax)相似。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The influence of surface roughness on the shear mechanical behavior of 2 mm spherical particle materials

Using glass beads as an ideal material analogous to soil particles makes it feasible to explore the effects of particle interactions on the mechanical behavior of the material. In this study, 2 mm high-precision spherical glass beads were selected as the raw material, and three test samples with varying surface roughness were produced using sandblasting technology. After quantifying the surface roughness of the particles, samples were prepared, and a series of laboratory triaxial consolidation drainage tests were conducted to investigate the shear behavior of particle materials with varying roughness levels. This investigation explores the effects of variations in particle surface roughness on the stress–strain characteristics, shear strength, critical state, and stick–slip behavior of triaxial samples. The experimental results indicate that an increase in particle surface roughness significantly raises the peak deviatoric stress, and the stress–strain curves predominantly exhibit strain softening behavior. Additionally, the slope of the critical state line increases, and the stick–slip behavior becomes less pronounced. The variation trend of the roughness index is similar to peak friction angle (φmax), peak deviatoric stress growth rate, slope (k) of the critical state line, and the maximum deviatoric stress drop (Δqmax) during stick–slip process.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
期刊最新文献
Research on the development of a monitoring experimental platform for top coal migration trajectory in longwall top coal caving and optimization of coal drawing process Liquefaction mechanisms of sand deposits with silt interlayer The study of motion characteristics of detectors based on magnetic localization technology in a soft granule system Development and performance assessment of a novel mechatronic assisted air pluviation system for reconstitution of cohesionless soils Experimental exploration of geometric cohesion and solid fraction in columns of highly non-convex Platonic polypods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1