Aydin Ashrafi-Belgabad, Reza Karimi, Mohammad Monfared, Kaili Tian, Parviz Parvin, Benji Wales, Éric Bisson, Samuel Beaulieu, Mathieu Giguère, Jean-Claude Kieffer, Philippe Lassonde, François Légaré, Heide Ibrahim, Joseph H. Sanderson
{"title":"强场激光诱导库仑爆炸后多原子分子实空间几何形状的重建","authors":"Aydin Ashrafi-Belgabad, Reza Karimi, Mohammad Monfared, Kaili Tian, Parviz Parvin, Benji Wales, Éric Bisson, Samuel Beaulieu, Mathieu Giguère, Jean-Claude Kieffer, Philippe Lassonde, François Légaré, Heide Ibrahim, Joseph H. Sanderson","doi":"10.1038/s42005-024-01863-8","DOIUrl":null,"url":null,"abstract":"Coulomb explosion is an established momentum imaging technique, where the molecules are ionized multiple times on a femtosecond time scale before breaking up into ionized fragments. By measuring the momentum of all the ions, information about the initial molecular structure is theoretically available. However, significant geometric changes due to multiple ionizations occur before the explosion, posing a challenge in retrieving the ground-state structure of molecules from the measured momentum values of the fragments. In this work, we investigate theoretically and experimentally such a connection between the ground-state geometry of a polyatomic molecule (OCS) and the detected momenta of ionic fragments from the Coulomb explosion. By relying on time-dependent density functional theory (TDDFT), we can rigorously model the ionization dynamics of the molecule in the tunneling regime. We reproduce the energy release and the Newton plot momentum patterns of an experiment in which OCS is ionized to the 6+ charge state. Our results provide insight into the behavior of molecules during strong field multiple ionization, opening a way toward precision imaging of real-space molecular geometries using tabletop lasers. Understanding molecular structure and dynamics through strong-field laser interactions holds great promise. The authors use quantum calculations to show how bonds and angles evolve in an OCS molecule ionized six times by a 7 fs, 800 nm laser pulse, accurately predicting our experimental results.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01863-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Reconstructing real-space geometries of polyatomic molecules undergoing strong field laser-induced Coulomb explosion\",\"authors\":\"Aydin Ashrafi-Belgabad, Reza Karimi, Mohammad Monfared, Kaili Tian, Parviz Parvin, Benji Wales, Éric Bisson, Samuel Beaulieu, Mathieu Giguère, Jean-Claude Kieffer, Philippe Lassonde, François Légaré, Heide Ibrahim, Joseph H. Sanderson\",\"doi\":\"10.1038/s42005-024-01863-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coulomb explosion is an established momentum imaging technique, where the molecules are ionized multiple times on a femtosecond time scale before breaking up into ionized fragments. By measuring the momentum of all the ions, information about the initial molecular structure is theoretically available. However, significant geometric changes due to multiple ionizations occur before the explosion, posing a challenge in retrieving the ground-state structure of molecules from the measured momentum values of the fragments. In this work, we investigate theoretically and experimentally such a connection between the ground-state geometry of a polyatomic molecule (OCS) and the detected momenta of ionic fragments from the Coulomb explosion. By relying on time-dependent density functional theory (TDDFT), we can rigorously model the ionization dynamics of the molecule in the tunneling regime. We reproduce the energy release and the Newton plot momentum patterns of an experiment in which OCS is ionized to the 6+ charge state. Our results provide insight into the behavior of molecules during strong field multiple ionization, opening a way toward precision imaging of real-space molecular geometries using tabletop lasers. Understanding molecular structure and dynamics through strong-field laser interactions holds great promise. The authors use quantum calculations to show how bonds and angles evolve in an OCS molecule ionized six times by a 7 fs, 800 nm laser pulse, accurately predicting our experimental results.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01863-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01863-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01863-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Reconstructing real-space geometries of polyatomic molecules undergoing strong field laser-induced Coulomb explosion
Coulomb explosion is an established momentum imaging technique, where the molecules are ionized multiple times on a femtosecond time scale before breaking up into ionized fragments. By measuring the momentum of all the ions, information about the initial molecular structure is theoretically available. However, significant geometric changes due to multiple ionizations occur before the explosion, posing a challenge in retrieving the ground-state structure of molecules from the measured momentum values of the fragments. In this work, we investigate theoretically and experimentally such a connection between the ground-state geometry of a polyatomic molecule (OCS) and the detected momenta of ionic fragments from the Coulomb explosion. By relying on time-dependent density functional theory (TDDFT), we can rigorously model the ionization dynamics of the molecule in the tunneling regime. We reproduce the energy release and the Newton plot momentum patterns of an experiment in which OCS is ionized to the 6+ charge state. Our results provide insight into the behavior of molecules during strong field multiple ionization, opening a way toward precision imaging of real-space molecular geometries using tabletop lasers. Understanding molecular structure and dynamics through strong-field laser interactions holds great promise. The authors use quantum calculations to show how bonds and angles evolve in an OCS molecule ionized six times by a 7 fs, 800 nm laser pulse, accurately predicting our experimental results.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.