{"title":"基于量子谷霍尔效应的频率依赖和非依赖模式能量谱拓扑边界","authors":"Keita Funayama, Kenichi Yatsugi, Hideo Iizuka","doi":"10.1038/s42005-024-01899-w","DOIUrl":null,"url":null,"abstract":"Topological artificial crystals can exhibit one-way wave-propagation along the boundary with the wave being localized perpendicular to the boundary. The control of localization of such topological wave propagation is of great importance for enhancing coupling or avoiding unwanted coupling among neighboring boundaries toward topological integrated circuits. However, the effect of the geometry of topological boundaries on localization properties is not yet fully clear. Here, we experimentally and numerically demonstrate valley-topological transport on representative valley-topological boundaries with micro-electro-mechanical systems. We show that the zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively. A simple analytic model is presented to capture the different behaviors of the two boundaries observed in the experiments. Our results provide opportunities to engineer frequency responses in topological circuits including frequency selective couplers through proper selection of boundary geometries. The authors numerically and experimentally investigate the transport properties of a quantum valley-Hall effect in a micro electromechanical system. The zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01899-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum valley Hall effect-based topological boundaries for frequency-dependent and -independent mode energy profiles\",\"authors\":\"Keita Funayama, Kenichi Yatsugi, Hideo Iizuka\",\"doi\":\"10.1038/s42005-024-01899-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological artificial crystals can exhibit one-way wave-propagation along the boundary with the wave being localized perpendicular to the boundary. The control of localization of such topological wave propagation is of great importance for enhancing coupling or avoiding unwanted coupling among neighboring boundaries toward topological integrated circuits. However, the effect of the geometry of topological boundaries on localization properties is not yet fully clear. Here, we experimentally and numerically demonstrate valley-topological transport on representative valley-topological boundaries with micro-electro-mechanical systems. We show that the zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively. A simple analytic model is presented to capture the different behaviors of the two boundaries observed in the experiments. Our results provide opportunities to engineer frequency responses in topological circuits including frequency selective couplers through proper selection of boundary geometries. The authors numerically and experimentally investigate the transport properties of a quantum valley-Hall effect in a micro electromechanical system. The zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01899-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01899-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01899-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum valley Hall effect-based topological boundaries for frequency-dependent and -independent mode energy profiles
Topological artificial crystals can exhibit one-way wave-propagation along the boundary with the wave being localized perpendicular to the boundary. The control of localization of such topological wave propagation is of great importance for enhancing coupling or avoiding unwanted coupling among neighboring boundaries toward topological integrated circuits. However, the effect of the geometry of topological boundaries on localization properties is not yet fully clear. Here, we experimentally and numerically demonstrate valley-topological transport on representative valley-topological boundaries with micro-electro-mechanical systems. We show that the zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively. A simple analytic model is presented to capture the different behaviors of the two boundaries observed in the experiments. Our results provide opportunities to engineer frequency responses in topological circuits including frequency selective couplers through proper selection of boundary geometries. The authors numerically and experimentally investigate the transport properties of a quantum valley-Hall effect in a micro electromechanical system. The zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.