基于量子谷霍尔效应的频率依赖和非依赖模式能量谱拓扑边界

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-12-19 DOI:10.1038/s42005-024-01899-w
Keita Funayama, Kenichi Yatsugi, Hideo Iizuka
{"title":"基于量子谷霍尔效应的频率依赖和非依赖模式能量谱拓扑边界","authors":"Keita Funayama, Kenichi Yatsugi, Hideo Iizuka","doi":"10.1038/s42005-024-01899-w","DOIUrl":null,"url":null,"abstract":"Topological artificial crystals can exhibit one-way wave-propagation along the boundary with the wave being localized perpendicular to the boundary. The control of localization of such topological wave propagation is of great importance for enhancing coupling or avoiding unwanted coupling among neighboring boundaries toward topological integrated circuits. However, the effect of the geometry of topological boundaries on localization properties is not yet fully clear. Here, we experimentally and numerically demonstrate valley-topological transport on representative valley-topological boundaries with micro-electro-mechanical systems. We show that the zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively. A simple analytic model is presented to capture the different behaviors of the two boundaries observed in the experiments. Our results provide opportunities to engineer frequency responses in topological circuits including frequency selective couplers through proper selection of boundary geometries. The authors numerically and experimentally investigate the transport properties of a quantum valley-Hall effect in a micro electromechanical system. The zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01899-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum valley Hall effect-based topological boundaries for frequency-dependent and -independent mode energy profiles\",\"authors\":\"Keita Funayama, Kenichi Yatsugi, Hideo Iizuka\",\"doi\":\"10.1038/s42005-024-01899-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological artificial crystals can exhibit one-way wave-propagation along the boundary with the wave being localized perpendicular to the boundary. The control of localization of such topological wave propagation is of great importance for enhancing coupling or avoiding unwanted coupling among neighboring boundaries toward topological integrated circuits. However, the effect of the geometry of topological boundaries on localization properties is not yet fully clear. Here, we experimentally and numerically demonstrate valley-topological transport on representative valley-topological boundaries with micro-electro-mechanical systems. We show that the zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively. A simple analytic model is presented to capture the different behaviors of the two boundaries observed in the experiments. Our results provide opportunities to engineer frequency responses in topological circuits including frequency selective couplers through proper selection of boundary geometries. The authors numerically and experimentally investigate the transport properties of a quantum valley-Hall effect in a micro electromechanical system. The zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01899-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01899-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01899-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

拓扑人工晶体可以表现出沿边界的单向波传播,波被定位于垂直于边界。这种拓扑波传播的局域化控制对于拓扑集成电路增强耦合或避免相邻边界之间的不必要耦合具有重要意义。然而,拓扑边界的几何形状对局部化特性的影响尚不完全清楚。在这里,我们用实验和数值方法证明了微机电系统在具有代表性的山谷拓扑边界上的山谷拓扑输运。我们发现具有高效波传递的之字形边界和桥状边界分别表现出频率无关和依赖的波局部化。提出了一个简单的解析模型来描述实验中观察到的两个边界的不同行为。我们的结果为通过适当选择边界几何形状来设计包括频率选择耦合器在内的拓扑电路的频率响应提供了机会。本文对微机电系统中量子谷-霍尔效应的输运特性进行了数值和实验研究。具有高效波传递的之字形边界和桥状边界分别表现为频率无关和依赖波局部化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum valley Hall effect-based topological boundaries for frequency-dependent and -independent mode energy profiles
Topological artificial crystals can exhibit one-way wave-propagation along the boundary with the wave being localized perpendicular to the boundary. The control of localization of such topological wave propagation is of great importance for enhancing coupling or avoiding unwanted coupling among neighboring boundaries toward topological integrated circuits. However, the effect of the geometry of topological boundaries on localization properties is not yet fully clear. Here, we experimentally and numerically demonstrate valley-topological transport on representative valley-topological boundaries with micro-electro-mechanical systems. We show that the zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively. A simple analytic model is presented to capture the different behaviors of the two boundaries observed in the experiments. Our results provide opportunities to engineer frequency responses in topological circuits including frequency selective couplers through proper selection of boundary geometries. The authors numerically and experimentally investigate the transport properties of a quantum valley-Hall effect in a micro electromechanical system. The zigzag and bridge boundaries, which have highly efficient wave transport, exhibit frequency independent and dependent wave localization, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1