Joseph Vimal Vas, Rohit Medwal, Sourabh Manna, Mayank Mishra, Aaron Muller, John Rex Mohan, Yasuhiro Fukuma, Martial Duchamp, Rajdeep Singh Rawat
{"title":"二维范德华材料/铁磁体界面局部磁域动力学的直接可视化","authors":"Joseph Vimal Vas, Rohit Medwal, Sourabh Manna, Mayank Mishra, Aaron Muller, John Rex Mohan, Yasuhiro Fukuma, Martial Duchamp, Rajdeep Singh Rawat","doi":"10.1038/s42005-024-01861-w","DOIUrl":null,"url":null,"abstract":"Controlling the magnetic domain propagation is the key to realize ultrafast, high-density domain wall-based memory and logic devices for next generation computing. Two-Dimensional (2D) Van der Waals materials introduce localized modifications to the interfacial magnetic order, which could enable efficient control over the propagation of magnetic domains. However, there is limited direct experimental evidence and understanding of the underlying mechanism, for 2D material mediated control of domain wall propagation. Here, using Lorentz-Transmission Electron Microscopy (L-TEM) along with the Modified Transport of Intensity equations (MTIE), we demonstrate controlled domain expansion with in-situ magnetic field in a ferromagnet (Permalloy, NiFe) interfacing with a 2D VdW material Graphene (Gr). The Gr/NiFe interface exhibits distinctive domain expansion rate with magnetic field selectively near the interface which is further analysed using micromagnetic simulations. Our findings are crucial for comprehending direct visualization of interface controlled magnetic domain expansion, offering insights for developing future domain wall-based technology. This study explores how the interface between Permalloy and graphene affects the propagation of magnetic domains. Using advanced transmission electron microscopy and simulations, the research reveals key insights that could advance future memory and logic technologies.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01861-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Direct visualization of local magnetic domain dynamics in a 2D Van der Walls material/ferromagnet interface\",\"authors\":\"Joseph Vimal Vas, Rohit Medwal, Sourabh Manna, Mayank Mishra, Aaron Muller, John Rex Mohan, Yasuhiro Fukuma, Martial Duchamp, Rajdeep Singh Rawat\",\"doi\":\"10.1038/s42005-024-01861-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling the magnetic domain propagation is the key to realize ultrafast, high-density domain wall-based memory and logic devices for next generation computing. Two-Dimensional (2D) Van der Waals materials introduce localized modifications to the interfacial magnetic order, which could enable efficient control over the propagation of magnetic domains. However, there is limited direct experimental evidence and understanding of the underlying mechanism, for 2D material mediated control of domain wall propagation. Here, using Lorentz-Transmission Electron Microscopy (L-TEM) along with the Modified Transport of Intensity equations (MTIE), we demonstrate controlled domain expansion with in-situ magnetic field in a ferromagnet (Permalloy, NiFe) interfacing with a 2D VdW material Graphene (Gr). The Gr/NiFe interface exhibits distinctive domain expansion rate with magnetic field selectively near the interface which is further analysed using micromagnetic simulations. Our findings are crucial for comprehending direct visualization of interface controlled magnetic domain expansion, offering insights for developing future domain wall-based technology. This study explores how the interface between Permalloy and graphene affects the propagation of magnetic domains. Using advanced transmission electron microscopy and simulations, the research reveals key insights that could advance future memory and logic technologies.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01861-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01861-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01861-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct visualization of local magnetic domain dynamics in a 2D Van der Walls material/ferromagnet interface
Controlling the magnetic domain propagation is the key to realize ultrafast, high-density domain wall-based memory and logic devices for next generation computing. Two-Dimensional (2D) Van der Waals materials introduce localized modifications to the interfacial magnetic order, which could enable efficient control over the propagation of magnetic domains. However, there is limited direct experimental evidence and understanding of the underlying mechanism, for 2D material mediated control of domain wall propagation. Here, using Lorentz-Transmission Electron Microscopy (L-TEM) along with the Modified Transport of Intensity equations (MTIE), we demonstrate controlled domain expansion with in-situ magnetic field in a ferromagnet (Permalloy, NiFe) interfacing with a 2D VdW material Graphene (Gr). The Gr/NiFe interface exhibits distinctive domain expansion rate with magnetic field selectively near the interface which is further analysed using micromagnetic simulations. Our findings are crucial for comprehending direct visualization of interface controlled magnetic domain expansion, offering insights for developing future domain wall-based technology. This study explores how the interface between Permalloy and graphene affects the propagation of magnetic domains. Using advanced transmission electron microscopy and simulations, the research reveals key insights that could advance future memory and logic technologies.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.