二维范德华材料/铁磁体界面局部磁域动力学的直接可视化

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-12-19 DOI:10.1038/s42005-024-01861-w
Joseph Vimal Vas, Rohit Medwal, Sourabh Manna, Mayank Mishra, Aaron Muller, John Rex Mohan, Yasuhiro Fukuma, Martial Duchamp, Rajdeep Singh Rawat
{"title":"二维范德华材料/铁磁体界面局部磁域动力学的直接可视化","authors":"Joseph Vimal Vas, Rohit Medwal, Sourabh Manna, Mayank Mishra, Aaron Muller, John Rex Mohan, Yasuhiro Fukuma, Martial Duchamp, Rajdeep Singh Rawat","doi":"10.1038/s42005-024-01861-w","DOIUrl":null,"url":null,"abstract":"Controlling the magnetic domain propagation is the key to realize ultrafast, high-density domain wall-based memory and logic devices for next generation computing. Two-Dimensional (2D) Van der Waals materials introduce localized modifications to the interfacial magnetic order, which could enable efficient control over the propagation of magnetic domains. However, there is limited direct experimental evidence and understanding of the underlying mechanism, for 2D material mediated control of domain wall propagation. Here, using Lorentz-Transmission Electron Microscopy (L-TEM) along with the Modified Transport of Intensity equations (MTIE), we demonstrate controlled domain expansion with in-situ magnetic field in a ferromagnet (Permalloy, NiFe) interfacing with a 2D VdW material Graphene (Gr). The Gr/NiFe interface exhibits distinctive domain expansion rate with magnetic field selectively near the interface which is further analysed using micromagnetic simulations. Our findings are crucial for comprehending direct visualization of interface controlled magnetic domain expansion, offering insights for developing future domain wall-based technology. This study explores how the interface between Permalloy and graphene affects the propagation of magnetic domains. Using advanced transmission electron microscopy and simulations, the research reveals key insights that could advance future memory and logic technologies.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01861-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Direct visualization of local magnetic domain dynamics in a 2D Van der Walls material/ferromagnet interface\",\"authors\":\"Joseph Vimal Vas, Rohit Medwal, Sourabh Manna, Mayank Mishra, Aaron Muller, John Rex Mohan, Yasuhiro Fukuma, Martial Duchamp, Rajdeep Singh Rawat\",\"doi\":\"10.1038/s42005-024-01861-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling the magnetic domain propagation is the key to realize ultrafast, high-density domain wall-based memory and logic devices for next generation computing. Two-Dimensional (2D) Van der Waals materials introduce localized modifications to the interfacial magnetic order, which could enable efficient control over the propagation of magnetic domains. However, there is limited direct experimental evidence and understanding of the underlying mechanism, for 2D material mediated control of domain wall propagation. Here, using Lorentz-Transmission Electron Microscopy (L-TEM) along with the Modified Transport of Intensity equations (MTIE), we demonstrate controlled domain expansion with in-situ magnetic field in a ferromagnet (Permalloy, NiFe) interfacing with a 2D VdW material Graphene (Gr). The Gr/NiFe interface exhibits distinctive domain expansion rate with magnetic field selectively near the interface which is further analysed using micromagnetic simulations. Our findings are crucial for comprehending direct visualization of interface controlled magnetic domain expansion, offering insights for developing future domain wall-based technology. This study explores how the interface between Permalloy and graphene affects the propagation of magnetic domains. Using advanced transmission electron microscopy and simulations, the research reveals key insights that could advance future memory and logic technologies.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01861-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01861-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01861-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

控制磁畴传播是实现下一代计算用超快、高密度畴壁存储器和逻辑器件的关键。二维(2D)范德华材料引入了对界面磁序的局部修改,这可以有效地控制磁畴的传播。然而,对于二维材料介导的畴壁传播控制的直接实验证据和潜在机制的理解有限。在这里,利用洛伦兹透射电子显微镜(L-TEM)和修正的强度输运方程(MTIE),我们证明了在铁磁体(Permalloy, NiFe)与二维VdW材料石墨烯(Gr)界面的原位磁场中控制域扩展。Gr/NiFe界面在磁场选择性作用下表现出明显的畴扩展速率,并利用微磁模拟进一步分析了这一现象。我们的发现对于理解界面控制磁畴扩展的直接可视化至关重要,为未来基于磁畴壁的技术的发展提供了见解。本研究探讨了坡莫合金和石墨烯之间的界面如何影响磁畴的传播。利用先进的透射电子显微镜和模拟,该研究揭示了可以推进未来存储和逻辑技术的关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct visualization of local magnetic domain dynamics in a 2D Van der Walls material/ferromagnet interface
Controlling the magnetic domain propagation is the key to realize ultrafast, high-density domain wall-based memory and logic devices for next generation computing. Two-Dimensional (2D) Van der Waals materials introduce localized modifications to the interfacial magnetic order, which could enable efficient control over the propagation of magnetic domains. However, there is limited direct experimental evidence and understanding of the underlying mechanism, for 2D material mediated control of domain wall propagation. Here, using Lorentz-Transmission Electron Microscopy (L-TEM) along with the Modified Transport of Intensity equations (MTIE), we demonstrate controlled domain expansion with in-situ magnetic field in a ferromagnet (Permalloy, NiFe) interfacing with a 2D VdW material Graphene (Gr). The Gr/NiFe interface exhibits distinctive domain expansion rate with magnetic field selectively near the interface which is further analysed using micromagnetic simulations. Our findings are crucial for comprehending direct visualization of interface controlled magnetic domain expansion, offering insights for developing future domain wall-based technology. This study explores how the interface between Permalloy and graphene affects the propagation of magnetic domains. Using advanced transmission electron microscopy and simulations, the research reveals key insights that could advance future memory and logic technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1