Luoxing Xiang, Xingtao Xu, Yijie Liu, Han Zhang, Ruibo Xu, Chen Li, Fugui Xu, Yusuke Yamauchi, Yiyong Mai
{"title":"电容去离子中的曲率诱导离子对接效应","authors":"Luoxing Xiang, Xingtao Xu, Yijie Liu, Han Zhang, Ruibo Xu, Chen Li, Fugui Xu, Yusuke Yamauchi, Yiyong Mai","doi":"10.1038/s44221-024-00340-4","DOIUrl":null,"url":null,"abstract":"Traditional capacitive deionization (CDI) materials usually exhibit low salt adsorption capacities due to the limitations in optimizing their specific surface area and chemical composition. Here we introduced the curvature parameter as a new variable for designing high-performance CDI electrodes. On the basis of a comprehensive surface curvature/electric field model, we found that smaller surface curvature radii may result in higher-concentration ion distributions. As a typical experimental example, bicontinuous mesoporous polypyrrole with saddle-shaped high-curvature surfaces demonstrated an enhanced ion docking effect, which provided high salt adsorption capacity values of 262.7 mg g−1 at 1.2 V and 312.5 mg g−1 at 100 mA g−1, along with an ultra-long cycling life of over 2,000 cycles. This CDI performance surpassed those of all previously reported CDI electrodes. This study provides a new design paradigm based on curvature structural engineering for next-generation CDI materials and demonstrates a promising approach for developing large-scale and sustainable high-performance CDI devices. A design principle based on the curvature parameter provides important guidance for the design of capacitive deionization electrodes.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 12","pages":"1195-1206"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature-induced ion docking effect in capacitive deionization\",\"authors\":\"Luoxing Xiang, Xingtao Xu, Yijie Liu, Han Zhang, Ruibo Xu, Chen Li, Fugui Xu, Yusuke Yamauchi, Yiyong Mai\",\"doi\":\"10.1038/s44221-024-00340-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional capacitive deionization (CDI) materials usually exhibit low salt adsorption capacities due to the limitations in optimizing their specific surface area and chemical composition. Here we introduced the curvature parameter as a new variable for designing high-performance CDI electrodes. On the basis of a comprehensive surface curvature/electric field model, we found that smaller surface curvature radii may result in higher-concentration ion distributions. As a typical experimental example, bicontinuous mesoporous polypyrrole with saddle-shaped high-curvature surfaces demonstrated an enhanced ion docking effect, which provided high salt adsorption capacity values of 262.7 mg g−1 at 1.2 V and 312.5 mg g−1 at 100 mA g−1, along with an ultra-long cycling life of over 2,000 cycles. This CDI performance surpassed those of all previously reported CDI electrodes. This study provides a new design paradigm based on curvature structural engineering for next-generation CDI materials and demonstrates a promising approach for developing large-scale and sustainable high-performance CDI devices. A design principle based on the curvature parameter provides important guidance for the design of capacitive deionization electrodes.\",\"PeriodicalId\":74252,\"journal\":{\"name\":\"Nature water\",\"volume\":\"2 12\",\"pages\":\"1195-1206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44221-024-00340-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00340-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
传统的电容性去离子(CDI)材料由于在优化其比表面积和化学成分方面的限制,通常表现出较低的盐吸附能力。本文引入曲率参数作为高性能CDI电极设计的新变量。在综合表面曲率/电场模型的基础上,我们发现表面曲率半径越小,离子浓度分布越高。作为典型的实验实例,具有鞍形高曲率表面的双连续介孔聚吡咯具有增强的离子对接效应,在1.2 V和100 mA g−1下具有262.7 mg g−1和312.5 mg g−1的高盐吸附容量,并具有超过2000次的超长循环寿命。这种CDI性能超过了以前报道的所有CDI电极。该研究为下一代CDI材料提供了一种基于曲率结构工程的新设计范式,为开发大规模、可持续的高性能CDI器件提供了一条有前途的途径。基于曲率参数的设计原理为电容去离子电极的设计提供了重要的指导。
Curvature-induced ion docking effect in capacitive deionization
Traditional capacitive deionization (CDI) materials usually exhibit low salt adsorption capacities due to the limitations in optimizing their specific surface area and chemical composition. Here we introduced the curvature parameter as a new variable for designing high-performance CDI electrodes. On the basis of a comprehensive surface curvature/electric field model, we found that smaller surface curvature radii may result in higher-concentration ion distributions. As a typical experimental example, bicontinuous mesoporous polypyrrole with saddle-shaped high-curvature surfaces demonstrated an enhanced ion docking effect, which provided high salt adsorption capacity values of 262.7 mg g−1 at 1.2 V and 312.5 mg g−1 at 100 mA g−1, along with an ultra-long cycling life of over 2,000 cycles. This CDI performance surpassed those of all previously reported CDI electrodes. This study provides a new design paradigm based on curvature structural engineering for next-generation CDI materials and demonstrates a promising approach for developing large-scale and sustainable high-performance CDI devices. A design principle based on the curvature parameter provides important guidance for the design of capacitive deionization electrodes.