{"title":"SmHSFA8 通过调节 SmEGY3-SmCSD1 模块和促进 SmF3H 介导的类黄酮生物合成增强茄子的耐热性","authors":"Renjian Liu, Yuyuan Wang, Bingbing Shu, Jinyang Xin, Bingwei Yu, Yuwei Gan, Yonggui Liang, Zhengkun Qiu, Shuangshuang Yan, Bihao Cao","doi":"10.1111/pce.15339","DOIUrl":null,"url":null,"abstract":"<p><p>High temperature (HT) is a major environmental factor that restrains eggplant growth and production. Heat shock factors (HSFs) play a vital role in the response of plants to high-temperature stress (HTS). However, the molecular mechanism by which HSFs regulate heat tolerance in eggplants remains unclear. Previously, we reported that SmEGY3 enhanced the heat tolerance of eggplant. Herein, SmHSFA8 activated SmEGY3 expression and interacted with SmEGY3 protein to enhance the activation function of SmEGY3 on SmCSD1. Virus-induced gene silencing (VIGS) and overexpression assays suggested that SmHSFA8 positively regulated heat tolerance in plants. SmHSFA8 enhanced the heat tolerance of tomato plants by promoting SlEGY3 expression, H<sub>2</sub>O<sub>2</sub> production and H<sub>2</sub>O<sub>2</sub>-mediated retrograde signalling pathway. DNA affinity purification sequencing (DAP-seq) analysis revealed that SmHSPs (SmHSP70, SmHSP70B and SmHSP21) and SmF3H were candidate downstream target genes of SmHSFA8. SmHSFA8 regulated the expression of HSPs and F3H and flavonoid content in plants. The silencing of SmF3H by VIGS reduced the flavonoid content and heat tolerance of eggplant. In addition, exogenous flavonoid treatment alleviated the HTS damage to eggplants. These results indicated that SmHSFA8 enhanced the heat tolerance of eggplant by activating SmHSPs exprerssion, mediating the SmEGY3-SmCSD1 module, and promoting SmF3H-mediated flavonoid biosynthesis.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SmHSFA8 Enhances the Heat Tolerance of Eggplant by Regulating the SmEGY3-SmCSD1 Module and Promoting SmF3H-mediated Flavonoid Biosynthesis.\",\"authors\":\"Renjian Liu, Yuyuan Wang, Bingbing Shu, Jinyang Xin, Bingwei Yu, Yuwei Gan, Yonggui Liang, Zhengkun Qiu, Shuangshuang Yan, Bihao Cao\",\"doi\":\"10.1111/pce.15339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High temperature (HT) is a major environmental factor that restrains eggplant growth and production. Heat shock factors (HSFs) play a vital role in the response of plants to high-temperature stress (HTS). However, the molecular mechanism by which HSFs regulate heat tolerance in eggplants remains unclear. Previously, we reported that SmEGY3 enhanced the heat tolerance of eggplant. Herein, SmHSFA8 activated SmEGY3 expression and interacted with SmEGY3 protein to enhance the activation function of SmEGY3 on SmCSD1. Virus-induced gene silencing (VIGS) and overexpression assays suggested that SmHSFA8 positively regulated heat tolerance in plants. SmHSFA8 enhanced the heat tolerance of tomato plants by promoting SlEGY3 expression, H<sub>2</sub>O<sub>2</sub> production and H<sub>2</sub>O<sub>2</sub>-mediated retrograde signalling pathway. DNA affinity purification sequencing (DAP-seq) analysis revealed that SmHSPs (SmHSP70, SmHSP70B and SmHSP21) and SmF3H were candidate downstream target genes of SmHSFA8. SmHSFA8 regulated the expression of HSPs and F3H and flavonoid content in plants. The silencing of SmF3H by VIGS reduced the flavonoid content and heat tolerance of eggplant. In addition, exogenous flavonoid treatment alleviated the HTS damage to eggplants. These results indicated that SmHSFA8 enhanced the heat tolerance of eggplant by activating SmHSPs exprerssion, mediating the SmEGY3-SmCSD1 module, and promoting SmF3H-mediated flavonoid biosynthesis.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15339\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15339","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
SmHSFA8 Enhances the Heat Tolerance of Eggplant by Regulating the SmEGY3-SmCSD1 Module and Promoting SmF3H-mediated Flavonoid Biosynthesis.
High temperature (HT) is a major environmental factor that restrains eggplant growth and production. Heat shock factors (HSFs) play a vital role in the response of plants to high-temperature stress (HTS). However, the molecular mechanism by which HSFs regulate heat tolerance in eggplants remains unclear. Previously, we reported that SmEGY3 enhanced the heat tolerance of eggplant. Herein, SmHSFA8 activated SmEGY3 expression and interacted with SmEGY3 protein to enhance the activation function of SmEGY3 on SmCSD1. Virus-induced gene silencing (VIGS) and overexpression assays suggested that SmHSFA8 positively regulated heat tolerance in plants. SmHSFA8 enhanced the heat tolerance of tomato plants by promoting SlEGY3 expression, H2O2 production and H2O2-mediated retrograde signalling pathway. DNA affinity purification sequencing (DAP-seq) analysis revealed that SmHSPs (SmHSP70, SmHSP70B and SmHSP21) and SmF3H were candidate downstream target genes of SmHSFA8. SmHSFA8 regulated the expression of HSPs and F3H and flavonoid content in plants. The silencing of SmF3H by VIGS reduced the flavonoid content and heat tolerance of eggplant. In addition, exogenous flavonoid treatment alleviated the HTS damage to eggplants. These results indicated that SmHSFA8 enhanced the heat tolerance of eggplant by activating SmHSPs exprerssion, mediating the SmEGY3-SmCSD1 module, and promoting SmF3H-mediated flavonoid biosynthesis.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.