MS sieve -推动生物分子质谱的极限。

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2025-01-01 Epub Date: 2024-12-17 DOI:10.1021/jasms.4c00343
Kudratullah Karimi, Jonathan Zöller, Tommy Hofmann, Rene Zangl, Jonathan Schulte, Julian D Langer, Carla Schmidt, Nina Morgner
{"title":"MS sieve -推动生物分子质谱的极限。","authors":"Kudratullah Karimi, Jonathan Zöller, Tommy Hofmann, Rene Zangl, Jonathan Schulte, Julian D Langer, Carla Schmidt, Nina Morgner","doi":"10.1021/jasms.4c00343","DOIUrl":null,"url":null,"abstract":"<p><p>Electrospray mass spectrometry has become indispensable in many disciplines including the classic \"omics\" techniques such as proteomics or lipidomics, as well as other life science applications in molecular, cellular, and structural biology. However, a limiting factor that often arises for the detection of biomolecular analytes is their poor ionization efficiency in the ion source. Here, we present an add-on device for the electrospray source, termed MS <i>SIEVE</i> (MS Spectral Impurity Eliminator & Value Enhancer), which is placed between the electrospray needle and the cone of the mass spectrometer. We probed the application of MS <i>SIEVE</i> for various biomolecules including proteins, peptides, lipids, glycans and DNA oligonucleotides and even synthetic polymers such as polyethylene glycol and found that MS <i>SIEVE</i> selectively improves the signal intensity, while suppressing the spectral contribution of contaminants such as NaCl. Importantly, MS <i>SIEVE</i> can, in principle, be adapted for any electrospray ion source and, therefore, represents a promising alternative for routine \"omics\" methods as well as special applications on challenging analytes.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"91-99"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698025/pdf/","citationCount":"0","resultStr":"{\"title\":\"MS <i>SIEVE</i>-Pushing the Limits for Biomolecular Mass Spectrometry.\",\"authors\":\"Kudratullah Karimi, Jonathan Zöller, Tommy Hofmann, Rene Zangl, Jonathan Schulte, Julian D Langer, Carla Schmidt, Nina Morgner\",\"doi\":\"10.1021/jasms.4c00343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrospray mass spectrometry has become indispensable in many disciplines including the classic \\\"omics\\\" techniques such as proteomics or lipidomics, as well as other life science applications in molecular, cellular, and structural biology. However, a limiting factor that often arises for the detection of biomolecular analytes is their poor ionization efficiency in the ion source. Here, we present an add-on device for the electrospray source, termed MS <i>SIEVE</i> (MS Spectral Impurity Eliminator & Value Enhancer), which is placed between the electrospray needle and the cone of the mass spectrometer. We probed the application of MS <i>SIEVE</i> for various biomolecules including proteins, peptides, lipids, glycans and DNA oligonucleotides and even synthetic polymers such as polyethylene glycol and found that MS <i>SIEVE</i> selectively improves the signal intensity, while suppressing the spectral contribution of contaminants such as NaCl. Importantly, MS <i>SIEVE</i> can, in principle, be adapted for any electrospray ion source and, therefore, represents a promising alternative for routine \\\"omics\\\" methods as well as special applications on challenging analytes.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"91-99\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698025/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00343\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00343","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

电喷雾质谱法在许多学科中已经不可或缺,包括经典的“组学”技术,如蛋白质组学或脂质组学,以及其他生命科学在分子、细胞和结构生物学中的应用。然而,在检测生物分子分析物时经常出现的一个限制因素是它们在离子源中的低电离效率。在这里,我们提出了一个附加装置的电喷雾源,称为MS筛(质谱杂质消除器和值增强器),它被放置在电喷雾针和质谱仪的锥之间。我们探索了MS SIEVE在多种生物分子(包括蛋白质、多肽、脂质、聚糖、DNA寡核苷酸甚至聚乙二醇等合成聚合物)上的应用,发现MS SIEVE选择性地提高了信号强度,同时抑制了污染物(如NaCl)的光谱贡献。重要的是,原则上,MS SIEVE可以适用于任何电喷雾离子源,因此,它代表了常规“组学”方法的一个有希望的替代方案,以及在具有挑战性的分析物上的特殊应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MS SIEVE-Pushing the Limits for Biomolecular Mass Spectrometry.

Electrospray mass spectrometry has become indispensable in many disciplines including the classic "omics" techniques such as proteomics or lipidomics, as well as other life science applications in molecular, cellular, and structural biology. However, a limiting factor that often arises for the detection of biomolecular analytes is their poor ionization efficiency in the ion source. Here, we present an add-on device for the electrospray source, termed MS SIEVE (MS Spectral Impurity Eliminator & Value Enhancer), which is placed between the electrospray needle and the cone of the mass spectrometer. We probed the application of MS SIEVE for various biomolecules including proteins, peptides, lipids, glycans and DNA oligonucleotides and even synthetic polymers such as polyethylene glycol and found that MS SIEVE selectively improves the signal intensity, while suppressing the spectral contribution of contaminants such as NaCl. Importantly, MS SIEVE can, in principle, be adapted for any electrospray ion source and, therefore, represents a promising alternative for routine "omics" methods as well as special applications on challenging analytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Faces of Mass Spectrometry/Ljiljana Paša-Tolić. Characterization of Sugammadex-Related Isomeric Cyclodextrin Impurities Using Cyclic Ion Mobility High-Resolution Mass Spectrometry. Locating Polyubiquitin Receptors on the 19S Regulatory Proteasome of S. cerevisiae by Cross-Linking Mass Spectrometry. Rigorous Analysis of Multimodal HDX-MS Spectra. A Hybrid Vacuum Flange RF Oscillator for Low-Cost Mass Spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1