管理转移性宫颈癌的潜在VEGFR2抑制剂:来自分子动力学和自由能景观研究的见解

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-12-18 DOI:10.1007/s11030-024-11080-8
Ahmed Alobaida, Amr S Abouzied, A Taslim Ahmed, Bader Huwaimel
{"title":"管理转移性宫颈癌的潜在VEGFR2抑制剂:来自分子动力学和自由能景观研究的见解","authors":"Ahmed Alobaida, Amr S Abouzied, A Taslim Ahmed, Bader Huwaimel","doi":"10.1007/s11030-024-11080-8","DOIUrl":null,"url":null,"abstract":"<p><p>Metastatic cervical cancer, the advanced stage where the cancer spreads beyond the cervix to other parts of the body, poses significant treatment challenges and is associated with poor survival rates. Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a critical angiogenic mediator, is upregulated in metastatic cervical cancer, driving the formation of new blood vessels that fuel tumor growth and spread, making it an attractive target for anti-angiogenic therapies aimed at halting metastasis. This study aims to determine the anti-angiogenic effects of natural compounds to identify new VEGFR2 inhibitors for managing metastatic cervical cancer. The potential effect of these compounds as VEGFR2 inhibitors at the structural level was assessed using various methods such as virtual screening, docking, MD simulations (1000 ns), binding free energy calculations, and free energy landscape analysis. Four compounds, including IMPHY007574, IMPHY004129, IMPHY008783, and IMPHY004928, were found to be potential VEGFR2 inhibitors. Among the structures analyzed in the present work, IMPHY007574 revealed the highest binding stability with VEGFR2 and the most favorable interaction pattern, thus proving the possibility of its use as an effective anti-angiogenic compound. The other three compounds also demonstrated a reasonably good promise in VEGFR2 inhibition. These findings provide a foundation for developing novel therapeutic strategies for metastatic cervical cancer, potentially overcoming drug resistance and improving patient survival rates.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential VEGFR2 inhibitors for managing metastatic cervical cancer: insights from molecular dynamics and free energy landscape studies.\",\"authors\":\"Ahmed Alobaida, Amr S Abouzied, A Taslim Ahmed, Bader Huwaimel\",\"doi\":\"10.1007/s11030-024-11080-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metastatic cervical cancer, the advanced stage where the cancer spreads beyond the cervix to other parts of the body, poses significant treatment challenges and is associated with poor survival rates. Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a critical angiogenic mediator, is upregulated in metastatic cervical cancer, driving the formation of new blood vessels that fuel tumor growth and spread, making it an attractive target for anti-angiogenic therapies aimed at halting metastasis. This study aims to determine the anti-angiogenic effects of natural compounds to identify new VEGFR2 inhibitors for managing metastatic cervical cancer. The potential effect of these compounds as VEGFR2 inhibitors at the structural level was assessed using various methods such as virtual screening, docking, MD simulations (1000 ns), binding free energy calculations, and free energy landscape analysis. Four compounds, including IMPHY007574, IMPHY004129, IMPHY008783, and IMPHY004928, were found to be potential VEGFR2 inhibitors. Among the structures analyzed in the present work, IMPHY007574 revealed the highest binding stability with VEGFR2 and the most favorable interaction pattern, thus proving the possibility of its use as an effective anti-angiogenic compound. The other three compounds also demonstrated a reasonably good promise in VEGFR2 inhibition. These findings provide a foundation for developing novel therapeutic strategies for metastatic cervical cancer, potentially overcoming drug resistance and improving patient survival rates.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11080-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11080-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

转移性宫颈癌是指癌症从子宫颈扩散到身体其他部位的晚期癌症,它给治疗带来了重大挑战,而且生存率很低。血管内皮生长因子受体2 (VEGFR2)是一种重要的血管生成介质,在转移性宫颈癌中表达上调,促进新血管的形成,促进肿瘤生长和扩散,使其成为旨在阻止转移的抗血管生成治疗的一个有吸引力的靶点。本研究旨在确定天然化合物的抗血管生成作用,以确定新的VEGFR2抑制剂用于治疗转移性宫颈癌。通过虚拟筛选、对接、MD模拟(1000 ns)、结合自由能计算和自由能景观分析等多种方法,评估了这些化合物作为VEGFR2抑制剂在结构水平上的潜在作用。四种化合物,包括IMPHY007574、IMPHY004129、IMPHY008783和IMPHY004928,被发现是潜在的VEGFR2抑制剂。在本研究分析的结构中,IMPHY007574与VEGFR2的结合稳定性最高,相互作用模式最有利,证明了其作为一种有效的抗血管生成化合物的可能性。另外三种化合物在抑制VEGFR2方面也表现出相当好的前景。这些发现为开发新的转移性宫颈癌治疗策略提供了基础,有可能克服耐药性并提高患者生存率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential VEGFR2 inhibitors for managing metastatic cervical cancer: insights from molecular dynamics and free energy landscape studies.

Metastatic cervical cancer, the advanced stage where the cancer spreads beyond the cervix to other parts of the body, poses significant treatment challenges and is associated with poor survival rates. Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a critical angiogenic mediator, is upregulated in metastatic cervical cancer, driving the formation of new blood vessels that fuel tumor growth and spread, making it an attractive target for anti-angiogenic therapies aimed at halting metastasis. This study aims to determine the anti-angiogenic effects of natural compounds to identify new VEGFR2 inhibitors for managing metastatic cervical cancer. The potential effect of these compounds as VEGFR2 inhibitors at the structural level was assessed using various methods such as virtual screening, docking, MD simulations (1000 ns), binding free energy calculations, and free energy landscape analysis. Four compounds, including IMPHY007574, IMPHY004129, IMPHY008783, and IMPHY004928, were found to be potential VEGFR2 inhibitors. Among the structures analyzed in the present work, IMPHY007574 revealed the highest binding stability with VEGFR2 and the most favorable interaction pattern, thus proving the possibility of its use as an effective anti-angiogenic compound. The other three compounds also demonstrated a reasonably good promise in VEGFR2 inhibition. These findings provide a foundation for developing novel therapeutic strategies for metastatic cervical cancer, potentially overcoming drug resistance and improving patient survival rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Structure-based inhibition of acetylcholinesterase and butyrylcholinesterase with 2-Aryl-6-carboxamide benzoxazole derivatives: synthesis, enzymatic assay, and in silico studies. Reactivity of amino acids and short peptide sequences: identifying bioactive compounds via DFT calculations. Sinefungin analogs targeting VP39 methyltransferase as potential anti-monkeypox therapeutics: a multi-step computational approach. Synthetic account on indoles and their analogues as potential anti-plasmodial agents. Development of novel nitric oxide production inhibitors based on the 7H-pyrrolo[2,3-d]pyrimidine scaffold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1