Cheng Wang, Rui Song, Jinjin Yuan, Ge Hou, A lan Chu, Yangyang Huang, Chenhu Xiao, Ting Chai, Chen Sun, Zongwen Liu
{"title":"AML来源间充质干细胞外泌体穿梭METTL14通过m6a - igf2bp3依赖机制稳定ROCK1表达,促进AML细胞增殖和辐射耐药","authors":"Cheng Wang, Rui Song, Jinjin Yuan, Ge Hou, A lan Chu, Yangyang Huang, Chenhu Xiao, Ting Chai, Chen Sun, Zongwen Liu","doi":"10.1002/ddr.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n <p>Acute myelogenous leukemia (AML)-derived mesenchymal stem cells (MSCs) (AML-MSCs) have been identified to play a significant role in AML progression. The functions of MSCs mainly depend on their paracrine action. Here, we investigated whether AML-MSCs functioned in AML cells by transferring METTL14 (Methyltransferase 14) into AML cells via exosomes. Functional analyses were conducted using MTT assay, 5-ethynyl-2-deoxyuridine assay and flow cytometry. qRT-PCR and western blot analyses detected levels of mRNAs and proteins. Exosomes (exo) were isolated from AML-MSCs by ultracentrifugation. The m6A modification profile was determined by methylated RNA immunoprecipitation (MeRIP) assay. The interaction between Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and Rho Kinase 1 (ROCK1) was validated using RIP assay. AML-MSCs incubation promoted the proliferation and radioresistance in AML cells. Moreover, AML-MSCs incubation led to increases in m6A levels and METTL14 levels in AML cells. METTL14 was transferred into AML cells by packaging into exosomes of AML-MSCs. The knockdown of METTL14 in AML-MSCs exosomes could reduce the proliferation and radioresistance in AML cells. Mechanistically, METTL14 induced ROCK1 m6A modification and stabilized its expression by an m6A-IGF2BP3-dependent mechanism. Rescue assay showed that ROCK1 overexpression reversed the inhibitory effects of METTL14 silencing in AML-MSCs exosomes on AML cell proliferation and radioresistance. Exosome-shuttled METTL14 from AML-MSCs promoted proliferation and conferred radioresistance in AML cells by stabilizing ROCK1 expression via an m6A-IGF2BP3-dependent mechanism.</p>\n </section>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosome-Shuttled METTL14 From AML-Derived Mesenchymal Stem Cells Promotes the Proliferation and Radioresistance in AML Cells by Stabilizing ROCK1 Expression via an m6A-IGF2BP3-Dependent Mechanism\",\"authors\":\"Cheng Wang, Rui Song, Jinjin Yuan, Ge Hou, A lan Chu, Yangyang Huang, Chenhu Xiao, Ting Chai, Chen Sun, Zongwen Liu\",\"doi\":\"10.1002/ddr.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n <p>Acute myelogenous leukemia (AML)-derived mesenchymal stem cells (MSCs) (AML-MSCs) have been identified to play a significant role in AML progression. The functions of MSCs mainly depend on their paracrine action. Here, we investigated whether AML-MSCs functioned in AML cells by transferring METTL14 (Methyltransferase 14) into AML cells via exosomes. Functional analyses were conducted using MTT assay, 5-ethynyl-2-deoxyuridine assay and flow cytometry. qRT-PCR and western blot analyses detected levels of mRNAs and proteins. Exosomes (exo) were isolated from AML-MSCs by ultracentrifugation. The m6A modification profile was determined by methylated RNA immunoprecipitation (MeRIP) assay. The interaction between Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and Rho Kinase 1 (ROCK1) was validated using RIP assay. AML-MSCs incubation promoted the proliferation and radioresistance in AML cells. Moreover, AML-MSCs incubation led to increases in m6A levels and METTL14 levels in AML cells. METTL14 was transferred into AML cells by packaging into exosomes of AML-MSCs. The knockdown of METTL14 in AML-MSCs exosomes could reduce the proliferation and radioresistance in AML cells. Mechanistically, METTL14 induced ROCK1 m6A modification and stabilized its expression by an m6A-IGF2BP3-dependent mechanism. Rescue assay showed that ROCK1 overexpression reversed the inhibitory effects of METTL14 silencing in AML-MSCs exosomes on AML cell proliferation and radioresistance. Exosome-shuttled METTL14 from AML-MSCs promoted proliferation and conferred radioresistance in AML cells by stabilizing ROCK1 expression via an m6A-IGF2BP3-dependent mechanism.</p>\\n </section>\\n </div>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70025\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Exosome-Shuttled METTL14 From AML-Derived Mesenchymal Stem Cells Promotes the Proliferation and Radioresistance in AML Cells by Stabilizing ROCK1 Expression via an m6A-IGF2BP3-Dependent Mechanism
Acute myelogenous leukemia (AML)-derived mesenchymal stem cells (MSCs) (AML-MSCs) have been identified to play a significant role in AML progression. The functions of MSCs mainly depend on their paracrine action. Here, we investigated whether AML-MSCs functioned in AML cells by transferring METTL14 (Methyltransferase 14) into AML cells via exosomes. Functional analyses were conducted using MTT assay, 5-ethynyl-2-deoxyuridine assay and flow cytometry. qRT-PCR and western blot analyses detected levels of mRNAs and proteins. Exosomes (exo) were isolated from AML-MSCs by ultracentrifugation. The m6A modification profile was determined by methylated RNA immunoprecipitation (MeRIP) assay. The interaction between Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and Rho Kinase 1 (ROCK1) was validated using RIP assay. AML-MSCs incubation promoted the proliferation and radioresistance in AML cells. Moreover, AML-MSCs incubation led to increases in m6A levels and METTL14 levels in AML cells. METTL14 was transferred into AML cells by packaging into exosomes of AML-MSCs. The knockdown of METTL14 in AML-MSCs exosomes could reduce the proliferation and radioresistance in AML cells. Mechanistically, METTL14 induced ROCK1 m6A modification and stabilized its expression by an m6A-IGF2BP3-dependent mechanism. Rescue assay showed that ROCK1 overexpression reversed the inhibitory effects of METTL14 silencing in AML-MSCs exosomes on AML cell proliferation and radioresistance. Exosome-shuttled METTL14 from AML-MSCs promoted proliferation and conferred radioresistance in AML cells by stabilizing ROCK1 expression via an m6A-IGF2BP3-dependent mechanism.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.