盐渍化对豌豆叶片光化学反射率和530 nm处反射光强度的小尺度空间异质性很敏感。

IF 2.6 4区 生物学 Q2 PLANT SCIENCES Functional Plant Biology Pub Date : 2024-12-01 DOI:10.1071/FP24254
Anastasiia Kior, Lyubov Yudina, Yuriy Zolin, Alyona Popova, Ekaterina Sukhova, Vladimir Sukhov
{"title":"盐渍化对豌豆叶片光化学反射率和530 nm处反射光强度的小尺度空间异质性很敏感。","authors":"Anastasiia Kior, Lyubov Yudina, Yuriy Zolin, Alyona Popova, Ekaterina Sukhova, Vladimir Sukhov","doi":"10.1071/FP24254","DOIUrl":null,"url":null,"abstract":"<p><p>Remote sensing of stressor action on plants is an important step of their protection. Measurement of photochemical reflectance index (PRI) can be used to detect action of stressors including salinization; potentially, a small-scale spatial heterogeneity of PRI (within leaf or its part) can be an indicator of this action. The current work was devoted to analysis of sensitivity of the small-scale heterogeneity in PRI and in the reflected light intensity at 530nm (approximately corresponding to the measuring wavelength for PRI) in leaves of pea (Pisum sativum ) plants to action of salinization. Plants were cultivated under controlled conditions of a vegetation room and under open-air conditions. It was shown that both the standard deviation of PRI and coefficient of variation of the reflected light intensity at 530nm were sensitive to action of salinization on plants. Moreover, this variation coefficient was negatively corelated to the potential quantum yield of PSII; i.e. increasing the coefficient could be used to estimate decreasing this yield caused by photodamage of PSII under salinization. Our results show that the small-scale spatial heterogeneity in PRI and the reflected light intensity at 530nm can be used as additional tools of the remote sensing of plant responses under action of salinization.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A small-scale spatial heterogeneity in photochemical reflectance index and intensity of reflected light at 530 nm in pea (<i>Pisum sativum</i>) leaves is sensitive to action of salinization.\",\"authors\":\"Anastasiia Kior, Lyubov Yudina, Yuriy Zolin, Alyona Popova, Ekaterina Sukhova, Vladimir Sukhov\",\"doi\":\"10.1071/FP24254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remote sensing of stressor action on plants is an important step of their protection. Measurement of photochemical reflectance index (PRI) can be used to detect action of stressors including salinization; potentially, a small-scale spatial heterogeneity of PRI (within leaf or its part) can be an indicator of this action. The current work was devoted to analysis of sensitivity of the small-scale heterogeneity in PRI and in the reflected light intensity at 530nm (approximately corresponding to the measuring wavelength for PRI) in leaves of pea (Pisum sativum ) plants to action of salinization. Plants were cultivated under controlled conditions of a vegetation room and under open-air conditions. It was shown that both the standard deviation of PRI and coefficient of variation of the reflected light intensity at 530nm were sensitive to action of salinization on plants. Moreover, this variation coefficient was negatively corelated to the potential quantum yield of PSII; i.e. increasing the coefficient could be used to estimate decreasing this yield caused by photodamage of PSII under salinization. Our results show that the small-scale spatial heterogeneity in PRI and the reflected light intensity at 530nm can be used as additional tools of the remote sensing of plant responses under action of salinization.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"51 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24254\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24254","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

遥感胁迫对植物的影响是保护植物的一个重要步骤。测量光化学反射指数(PRI)可用于检测包括盐碱化在内的胁迫作用;PRI 的小尺度空间异质性(叶片内或其部分)可能是这种作用的指标。目前的工作致力于分析豌豆(Pisum sativum)植物叶片中 PRI 和 530 纳米(大约相当于 PRI 的测量波长)反射光强度的小尺度异质性对盐渍化作用的敏感性。植物分别在受控的植物室和露天条件下栽培。结果表明,PRI 的标准偏差和 530nm 波长反射光强度的变异系数对盐渍化对植物的影响都很敏感。此外,该变化系数与 PSII 的潜在量子产率呈负相关;也就是说,增加该系数可用于估算盐碱化条件下 PSII 光损伤导致的量子产率下降。我们的研究结果表明,PRI 的小尺度空间异质性和 530nm 波长的反射光强度可用作遥感盐碱化作用下植物反应的额外工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A small-scale spatial heterogeneity in photochemical reflectance index and intensity of reflected light at 530 nm in pea (Pisum sativum) leaves is sensitive to action of salinization.

Remote sensing of stressor action on plants is an important step of their protection. Measurement of photochemical reflectance index (PRI) can be used to detect action of stressors including salinization; potentially, a small-scale spatial heterogeneity of PRI (within leaf or its part) can be an indicator of this action. The current work was devoted to analysis of sensitivity of the small-scale heterogeneity in PRI and in the reflected light intensity at 530nm (approximately corresponding to the measuring wavelength for PRI) in leaves of pea (Pisum sativum ) plants to action of salinization. Plants were cultivated under controlled conditions of a vegetation room and under open-air conditions. It was shown that both the standard deviation of PRI and coefficient of variation of the reflected light intensity at 530nm were sensitive to action of salinization on plants. Moreover, this variation coefficient was negatively corelated to the potential quantum yield of PSII; i.e. increasing the coefficient could be used to estimate decreasing this yield caused by photodamage of PSII under salinization. Our results show that the small-scale spatial heterogeneity in PRI and the reflected light intensity at 530nm can be used as additional tools of the remote sensing of plant responses under action of salinization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
期刊最新文献
Assessing the efficacy of synthetic compounds foliar sprays in alleviating terminal heat stress in late-sown wheat (Triticum aestivum). Enhancing the productivity and resilience of rice (Oryza sativa) under environmental stress conditions using clustered regularly interspaced short palindromic repeats (CRISPR) technology. The relationship between GABA content and desiccation tolerance at five developmental stages of wheat (Triticum durum) seeds. Escape of etiolated hypocotyls of cotton (Gossypium hirsutum) from the unilateral high intensity blue light after being pulled out from the soil. A small-scale spatial heterogeneity in photochemical reflectance index and intensity of reflected light at 530 nm in pea (Pisum sativum) leaves is sensitive to action of salinization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1