Maarten Meire, Ben van Aelst, Aldin Sehovic, Shengjile Deari, Matthias Zehnder
{"title":"水中的溶质会影响脉冲掺铒钇铝石榴石激光器产生的初级空化气泡。","authors":"Maarten Meire, Ben van Aelst, Aldin Sehovic, Shengjile Deari, Matthias Zehnder","doi":"10.1007/s10103-024-04257-y","DOIUrl":null,"url":null,"abstract":"<p><p>Laser-activated irrigation (LAI) of root canal systems depends on the generation of cavitation bubbles in the endodontic irrigant. Physical studies thus far focused on pulse energy, pulse length, frequency, and fiber tip shape, mostly in plain water. This study investigated the effect of endodontically relevant molecules (sodium hypochlorite (NaOCl), 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), and their combination) in water on physical properties of the resulting solution, and their impact on primary cavitation bubble features. A commercially available 3% NaOCl irrigant was used, as well as an etidronate powder (Dual Rinse HEDP) to be admixed. Physical parameters (density, surface tension, and viscosity) of these solutions were assessed, including HEDP effects in an ascending concentration series of up to 20%. Primary cavitation bubble features (dimensional and temporal) in conjunction with a pulsed erbium-doped yttrium aluminium garnet (Er: YAG) laser equipped with a flat or conical fiber tip were studied in these liquids using a high-speed camera. Solutes increased the solution's density, surface tension, and viscosity, with an almost linear response to HEDP dosage (Pearson correlation coefficient > 0.95). This reduced the speed of the primary cavitation bubble, and increased its size and lifetime. Increased HEDP concentrations had a pronounced effect on the shape of bubbles generated at the flat tip. NaOCl and HEDP alter the physical properties of water, which, in turn, affect its cavitation behavior.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"39 1","pages":"298"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Solutes in water affect the primary cavitation bubble generated by a pulsed erbium-doped yttrium aluminium garnet laser.\",\"authors\":\"Maarten Meire, Ben van Aelst, Aldin Sehovic, Shengjile Deari, Matthias Zehnder\",\"doi\":\"10.1007/s10103-024-04257-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Laser-activated irrigation (LAI) of root canal systems depends on the generation of cavitation bubbles in the endodontic irrigant. Physical studies thus far focused on pulse energy, pulse length, frequency, and fiber tip shape, mostly in plain water. This study investigated the effect of endodontically relevant molecules (sodium hypochlorite (NaOCl), 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), and their combination) in water on physical properties of the resulting solution, and their impact on primary cavitation bubble features. A commercially available 3% NaOCl irrigant was used, as well as an etidronate powder (Dual Rinse HEDP) to be admixed. Physical parameters (density, surface tension, and viscosity) of these solutions were assessed, including HEDP effects in an ascending concentration series of up to 20%. Primary cavitation bubble features (dimensional and temporal) in conjunction with a pulsed erbium-doped yttrium aluminium garnet (Er: YAG) laser equipped with a flat or conical fiber tip were studied in these liquids using a high-speed camera. Solutes increased the solution's density, surface tension, and viscosity, with an almost linear response to HEDP dosage (Pearson correlation coefficient > 0.95). This reduced the speed of the primary cavitation bubble, and increased its size and lifetime. Increased HEDP concentrations had a pronounced effect on the shape of bubbles generated at the flat tip. NaOCl and HEDP alter the physical properties of water, which, in turn, affect its cavitation behavior.</p>\",\"PeriodicalId\":17978,\"journal\":{\"name\":\"Lasers in Medical Science\",\"volume\":\"39 1\",\"pages\":\"298\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lasers in Medical Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10103-024-04257-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04257-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Solutes in water affect the primary cavitation bubble generated by a pulsed erbium-doped yttrium aluminium garnet laser.
Laser-activated irrigation (LAI) of root canal systems depends on the generation of cavitation bubbles in the endodontic irrigant. Physical studies thus far focused on pulse energy, pulse length, frequency, and fiber tip shape, mostly in plain water. This study investigated the effect of endodontically relevant molecules (sodium hypochlorite (NaOCl), 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), and their combination) in water on physical properties of the resulting solution, and their impact on primary cavitation bubble features. A commercially available 3% NaOCl irrigant was used, as well as an etidronate powder (Dual Rinse HEDP) to be admixed. Physical parameters (density, surface tension, and viscosity) of these solutions were assessed, including HEDP effects in an ascending concentration series of up to 20%. Primary cavitation bubble features (dimensional and temporal) in conjunction with a pulsed erbium-doped yttrium aluminium garnet (Er: YAG) laser equipped with a flat or conical fiber tip were studied in these liquids using a high-speed camera. Solutes increased the solution's density, surface tension, and viscosity, with an almost linear response to HEDP dosage (Pearson correlation coefficient > 0.95). This reduced the speed of the primary cavitation bubble, and increased its size and lifetime. Increased HEDP concentrations had a pronounced effect on the shape of bubbles generated at the flat tip. NaOCl and HEDP alter the physical properties of water, which, in turn, affect its cavitation behavior.
期刊介绍:
Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics.
The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.