用户的性格特征如何预测社交媒体中用户生成内容的情感倾向?配置分析与机器学习的混合方法。

IF 5 1区 心理学 Q1 Psychology Journal of Personality Pub Date : 2024-12-18 DOI:10.1111/jopy.13000
Yongqing Yang, Jianyue Xu, Ling Zhao, Lesley Pek Wee Land, Wenli Li
{"title":"用户的性格特征如何预测社交媒体中用户生成内容的情感倾向?配置分析与机器学习的混合方法。","authors":"Yongqing Yang, Jianyue Xu, Ling Zhao, Lesley Pek Wee Land, Wenli Li","doi":"10.1111/jopy.13000","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Social media content created by users with different personality traits presents various sentiment tendencies, easily leading to irrational public opinion. This study aims to explore the relationships between users' personality traits and sentiment tendencies of user-generated content (UGC).</p><p><strong>Method: </strong>We crawled 18,686 tweets of 1, 215 users from Twitter to figure out the relationships between personality traits and sentiment tendencies. This study utilizes Essays and Sentiment datasets to train machine learning models for the identification of personality traits and sentiment tendencies and then explores the configuration effect of personality traits on sentiment tendency via crisp-set Qualitative Comparative Analysis (csQCA).</p><p><strong>Result: </strong>The findings suggest that (1) one-dimensional personality trait is not a necessary condition for the sentiment tendencies of UGC. (2) There are multiple equivalent configurations that lead to the sentiment tendencies of UGC.</p><p><strong>Conclusion: </strong>The study suggests that the sentiment tendencies pattern of UGC can be discovered via the configurations of various dimensions of personality traits.</p>","PeriodicalId":48421,"journal":{"name":"Journal of Personality","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Users' Personality Traits Predict Sentiment Tendencies of User-Generated Content in Social Media: A Mixed Method of Configuration Analysis and Machine Learning.\",\"authors\":\"Yongqing Yang, Jianyue Xu, Ling Zhao, Lesley Pek Wee Land, Wenli Li\",\"doi\":\"10.1111/jopy.13000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Social media content created by users with different personality traits presents various sentiment tendencies, easily leading to irrational public opinion. This study aims to explore the relationships between users' personality traits and sentiment tendencies of user-generated content (UGC).</p><p><strong>Method: </strong>We crawled 18,686 tweets of 1, 215 users from Twitter to figure out the relationships between personality traits and sentiment tendencies. This study utilizes Essays and Sentiment datasets to train machine learning models for the identification of personality traits and sentiment tendencies and then explores the configuration effect of personality traits on sentiment tendency via crisp-set Qualitative Comparative Analysis (csQCA).</p><p><strong>Result: </strong>The findings suggest that (1) one-dimensional personality trait is not a necessary condition for the sentiment tendencies of UGC. (2) There are multiple equivalent configurations that lead to the sentiment tendencies of UGC.</p><p><strong>Conclusion: </strong>The study suggests that the sentiment tendencies pattern of UGC can be discovered via the configurations of various dimensions of personality traits.</p>\",\"PeriodicalId\":48421,\"journal\":{\"name\":\"Journal of Personality\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Personality\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/jopy.13000\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personality","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/jopy.13000","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

摘要

目的:不同人格特征的用户创作的社交媒体内容呈现出不同的情绪倾向,容易导致不合理的舆论。本研究旨在探讨用户人格特质与用户生成内容(UGC)情感倾向之间的关系。方法:我们从Twitter上抓取了1215名用户的18686条推文,以找出人格特征与情绪倾向之间的关系。本研究利用论文和情感数据集训练识别人格特质和情感倾向的机器学习模型,然后通过crisp-set Qualitative Comparative Analysis (csQCA)探讨人格特质对情感倾向的配置效应。结果:研究结果表明:(1)一维人格特质并不是UGC情感倾向的必要条件。(2)导致UGC情感倾向的等价配置有多种。结论:研究表明,UGC的情感倾向模式可以通过人格特质各维度的配置来发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Users' Personality Traits Predict Sentiment Tendencies of User-Generated Content in Social Media: A Mixed Method of Configuration Analysis and Machine Learning.

Objective: Social media content created by users with different personality traits presents various sentiment tendencies, easily leading to irrational public opinion. This study aims to explore the relationships between users' personality traits and sentiment tendencies of user-generated content (UGC).

Method: We crawled 18,686 tweets of 1, 215 users from Twitter to figure out the relationships between personality traits and sentiment tendencies. This study utilizes Essays and Sentiment datasets to train machine learning models for the identification of personality traits and sentiment tendencies and then explores the configuration effect of personality traits on sentiment tendency via crisp-set Qualitative Comparative Analysis (csQCA).

Result: The findings suggest that (1) one-dimensional personality trait is not a necessary condition for the sentiment tendencies of UGC. (2) There are multiple equivalent configurations that lead to the sentiment tendencies of UGC.

Conclusion: The study suggests that the sentiment tendencies pattern of UGC can be discovered via the configurations of various dimensions of personality traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Personality
Journal of Personality PSYCHOLOGY, SOCIAL-
CiteScore
9.60
自引率
6.00%
发文量
100
期刊介绍: Journal of Personality publishes scientific investigations in the field of personality. It focuses particularly on personality and behavior dynamics, personality development, and individual differences in the cognitive, affective, and interpersonal domains. The journal reflects and stimulates interest in the growth of new theoretical and methodological approaches in personality psychology.
期刊最新文献
Personality, Ideology, and Attitudes Toward Social Justice. Beyond the Moderating Role of Neuroticism on Evaluative Conditioning: Threat Appraisal. Inter- and Intraindividual Relations Between Agentic, Communal Self-Enhancement and Hedonic, Eudaimonic Well-Being: Feedback and Mediation Mechanisms. Investigating solitude as a tool for downregulation of daily arousal using ecological momentary assessments. Embodied Cognition and the Structure of Personality: An Exploratory Study of Longitudinal Pathways From Early Psychomotor Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1