具有集成实时干涉反馈的闭环自适应x射线反射镜的皮米级表面控制。

IF 2.5 3区 物理与天体物理 Journal of Synchrotron Radiation Pub Date : 2025-01-01 DOI:10.1107/S1600577524011007
Ioana Theodora Nistea, Simon G Alcock, Andrew Foster, Vivek Badami, Riccardo Signorato, Matteo Fusco
{"title":"具有集成实时干涉反馈的闭环自适应x射线反射镜的皮米级表面控制。","authors":"Ioana Theodora Nistea, Simon G Alcock, Andrew Foster, Vivek Badami, Riccardo Signorato, Matteo Fusco","doi":"10.1107/S1600577524011007","DOIUrl":null,"url":null,"abstract":"<p><p>We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface. Hence, users can rapidly switch in closed-loop between pre-calibrated X-ray wavefronts by selecting the corresponding freeform optical profile. This closed-loop monitoring is shown to repeatably bend and stabilize the low- and mid-spatial frequency components of the mirror surface to any given profile with an error <200 pm peak-to-valley, regardless of the recent history of bending and hysteresis. Without closed-loop stabilization after bending, the mirror height profile is shown to drift by hundreds of nanometres, which will slowly distort the X-ray wavefront. The metrology frame that holds the interferometric sensors is designed to be largely insensitive to temperature changes, providing an ultra-stable reference datum to enhance repeatability. We demonstrate an unprecedented level of fast and precise optical control in the X-ray domain: the profile of a macroscopic X-ray mirror of over 0.5 m in length was freely adjusted and stabilized to atomic level height resolution. Aside from demonstrating the extreme sensitivity of the interferometer sensors, this study also highlights the voltage repeatability and stability of the programmable high-voltage power supply, the accuracy of the correction-calculation algorithms and the almost instantaneous response of the bimorph mirror to command voltage pulses. Finally, we demonstrate the robustness of the system by showing that the bimorph mirror's optical surface was not damaged by more than 1 million voltage cycles, including no occurrence of the `junction effect' or weakening of piezoelectric actuator strength. Hence, this hardware combination provides a real time, hyper-precise, temperature-insensitive, closed-loop system which could benefit many optical communities, including EUV lithography, who require sub-nanometre bending control of the mirror form.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"133-144"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708852/pdf/","citationCount":"0","resultStr":"{\"title\":\"Picometre-level surface control of a closed-loop, adaptive X-ray mirror with integrated real-time interferometric feedback.\",\"authors\":\"Ioana Theodora Nistea, Simon G Alcock, Andrew Foster, Vivek Badami, Riccardo Signorato, Matteo Fusco\",\"doi\":\"10.1107/S1600577524011007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface. Hence, users can rapidly switch in closed-loop between pre-calibrated X-ray wavefronts by selecting the corresponding freeform optical profile. This closed-loop monitoring is shown to repeatably bend and stabilize the low- and mid-spatial frequency components of the mirror surface to any given profile with an error <200 pm peak-to-valley, regardless of the recent history of bending and hysteresis. Without closed-loop stabilization after bending, the mirror height profile is shown to drift by hundreds of nanometres, which will slowly distort the X-ray wavefront. The metrology frame that holds the interferometric sensors is designed to be largely insensitive to temperature changes, providing an ultra-stable reference datum to enhance repeatability. We demonstrate an unprecedented level of fast and precise optical control in the X-ray domain: the profile of a macroscopic X-ray mirror of over 0.5 m in length was freely adjusted and stabilized to atomic level height resolution. Aside from demonstrating the extreme sensitivity of the interferometer sensors, this study also highlights the voltage repeatability and stability of the programmable high-voltage power supply, the accuracy of the correction-calculation algorithms and the almost instantaneous response of the bimorph mirror to command voltage pulses. Finally, we demonstrate the robustness of the system by showing that the bimorph mirror's optical surface was not damaged by more than 1 million voltage cycles, including no occurrence of the `junction effect' or weakening of piezoelectric actuator strength. Hence, this hardware combination provides a real time, hyper-precise, temperature-insensitive, closed-loop system which could benefit many optical communities, including EUV lithography, who require sub-nanometre bending control of the mirror form.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\" \",\"pages\":\"133-144\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708852/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577524011007\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524011007","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一种创新的、闭环的、自适应镜像系统的实际开发和离线测试的技术描述和实验结果,该系统能够快速、精确和超稳定地改变同步加速器和自由电子激光设备产生的反射x射线光束的大小和形状。利用干涉测量传感器阵列对压电双晶片变形镜的光学表面进行了20 kHz的连续监测。高度数据矩阵自动转换成电压命令,以1hz的频率发送给压电致动器,以修改镜面光学表面的形状。因此,用户可以通过选择相应的自由曲面光学轮廓,在预先校准的x射线波前之间快速闭环切换。这种闭环监测被证明可以重复弯曲和稳定镜面的低频和中频分量到任何给定的误差剖面
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Picometre-level surface control of a closed-loop, adaptive X-ray mirror with integrated real-time interferometric feedback.

We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface. Hence, users can rapidly switch in closed-loop between pre-calibrated X-ray wavefronts by selecting the corresponding freeform optical profile. This closed-loop monitoring is shown to repeatably bend and stabilize the low- and mid-spatial frequency components of the mirror surface to any given profile with an error <200 pm peak-to-valley, regardless of the recent history of bending and hysteresis. Without closed-loop stabilization after bending, the mirror height profile is shown to drift by hundreds of nanometres, which will slowly distort the X-ray wavefront. The metrology frame that holds the interferometric sensors is designed to be largely insensitive to temperature changes, providing an ultra-stable reference datum to enhance repeatability. We demonstrate an unprecedented level of fast and precise optical control in the X-ray domain: the profile of a macroscopic X-ray mirror of over 0.5 m in length was freely adjusted and stabilized to atomic level height resolution. Aside from demonstrating the extreme sensitivity of the interferometer sensors, this study also highlights the voltage repeatability and stability of the programmable high-voltage power supply, the accuracy of the correction-calculation algorithms and the almost instantaneous response of the bimorph mirror to command voltage pulses. Finally, we demonstrate the robustness of the system by showing that the bimorph mirror's optical surface was not damaged by more than 1 million voltage cycles, including no occurrence of the `junction effect' or weakening of piezoelectric actuator strength. Hence, this hardware combination provides a real time, hyper-precise, temperature-insensitive, closed-loop system which could benefit many optical communities, including EUV lithography, who require sub-nanometre bending control of the mirror form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
期刊最新文献
Compensation for the source drift of a free-electron laser beamline by adjusting the fixed-focus constant of the grating monochromator. Long-term timing stabilization for pump-probe experiments at SACLA. Novel fixed-target serial crystallography flip-holder for macromolecular crystallography beamlines at synchrotron radiation sources. Probing soft X-ray induced photoreduction of a model Mn-complex at cryogenic conditions. ULtimate MAGnetic characterization (ULMAG) at the ID12 beamline of ESRF: from element-specific properties to macroscopic functionalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1