秸秆添加对黑麦草重金属吸收及微生物群落结构的影响

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2024-12-19 DOI:10.1007/s11104-024-07156-x
Jiuwei Song, Yunxiu Zhao, Yuhan Cai, Boping Tang, Fenghua Ding, Philip C. Brookes, Xingmei Liu
{"title":"秸秆添加对黑麦草重金属吸收及微生物群落结构的影响","authors":"Jiuwei Song, Yunxiu Zhao, Yuhan Cai, Boping Tang, Fenghua Ding, Philip C. Brookes, Xingmei Liu","doi":"10.1007/s11104-024-07156-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Soil contaminated with heavy metals not only affects human health and safety but also poses a potential threat to the ecological balance of soil microbes. Ryegrass effectively extracts heavy metals from soil. Straw can increase the biomass of ryegrass, but the effects of straw addition on heavy metal absorption and changes in soil microbial community structure remain unclear. Our objective was to determine whether straw addition was beneficial to heavy metal accumulation in ryegrass and how straw addition changed the soil microbial community structure.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In our study, straw was added to soil contaminated with cadmium, copper, and zinc. We planted ryegrass in the greenhouse and measured the heavy metal content in the roots and shoots of ryegrass at 50 days.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Straw addition increased available heavy metal conversion, soil microbial biomass, and ryegrass yield, increasing heavy metal absorption by ryegrass. An opposite trend was observed between the available heavy metals and soil microbial biomass during the ryegrass growth period. The bacterial community structure was primarily affected by the available heavy metal concentrations and the soil physicochemical properties. Bacteria with heavy metal resistance and straw decomposition ability dominated the soil after straw addition.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This study showed that straw addition can not only increase the heavy metal absorption of ryegrass but also act as a substrate to change the bacterial community structure. The results of this study provided directions for increasing the ability of plants to extract heavy metals and changing the soil microbial community structure using straw.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"23 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of straw addition on ryegrass (Lolium perenne L.) heavy metal absorption and microbial community structure\",\"authors\":\"Jiuwei Song, Yunxiu Zhao, Yuhan Cai, Boping Tang, Fenghua Ding, Philip C. Brookes, Xingmei Liu\",\"doi\":\"10.1007/s11104-024-07156-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Aims</h3><p>Soil contaminated with heavy metals not only affects human health and safety but also poses a potential threat to the ecological balance of soil microbes. Ryegrass effectively extracts heavy metals from soil. Straw can increase the biomass of ryegrass, but the effects of straw addition on heavy metal absorption and changes in soil microbial community structure remain unclear. Our objective was to determine whether straw addition was beneficial to heavy metal accumulation in ryegrass and how straw addition changed the soil microbial community structure.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>In our study, straw was added to soil contaminated with cadmium, copper, and zinc. We planted ryegrass in the greenhouse and measured the heavy metal content in the roots and shoots of ryegrass at 50 days.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>Straw addition increased available heavy metal conversion, soil microbial biomass, and ryegrass yield, increasing heavy metal absorption by ryegrass. An opposite trend was observed between the available heavy metals and soil microbial biomass during the ryegrass growth period. The bacterial community structure was primarily affected by the available heavy metal concentrations and the soil physicochemical properties. Bacteria with heavy metal resistance and straw decomposition ability dominated the soil after straw addition.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>This study showed that straw addition can not only increase the heavy metal absorption of ryegrass but also act as a substrate to change the bacterial community structure. The results of this study provided directions for increasing the ability of plants to extract heavy metals and changing the soil microbial community structure using straw.</p>\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-07156-x\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07156-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

目的土壤重金属污染不仅影响人体健康和安全,而且对土壤微生物的生态平衡构成潜在威胁。黑麦草能有效地提取土壤中的重金属。秸秆可以增加黑麦草生物量,但秸秆添加对重金属吸收和土壤微生物群落结构变化的影响尚不清楚。我们的目的是确定秸秆添加是否有利于黑麦草重金属的积累,以及秸秆添加如何改变土壤微生物群落结构。方法在镉、铜、锌污染土壤中添加秸秆。在温室内种植黑麦草,测定50 d黑麦草根、芽中重金属含量。结果秸秆增加了有效重金属转化率、土壤微生物量和黑麦草产量,增加了黑麦草对重金属的吸收。黑麦草生育期有效重金属与土壤微生物量呈相反趋势。细菌群落结构主要受有效态重金属浓度和土壤理化性质的影响。添加秸秆后土壤中具有抗重金属能力和秸秆分解能力的细菌占主导地位。结论秸秆的添加不仅可以增加黑麦草对重金属的吸收,还可以作为改变细菌群落结构的底物。本研究结果为利用秸秆提高植物对重金属的吸收能力和改变土壤微生物群落结构提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of straw addition on ryegrass (Lolium perenne L.) heavy metal absorption and microbial community structure

Aims

Soil contaminated with heavy metals not only affects human health and safety but also poses a potential threat to the ecological balance of soil microbes. Ryegrass effectively extracts heavy metals from soil. Straw can increase the biomass of ryegrass, but the effects of straw addition on heavy metal absorption and changes in soil microbial community structure remain unclear. Our objective was to determine whether straw addition was beneficial to heavy metal accumulation in ryegrass and how straw addition changed the soil microbial community structure.

Methods

In our study, straw was added to soil contaminated with cadmium, copper, and zinc. We planted ryegrass in the greenhouse and measured the heavy metal content in the roots and shoots of ryegrass at 50 days.

Results

Straw addition increased available heavy metal conversion, soil microbial biomass, and ryegrass yield, increasing heavy metal absorption by ryegrass. An opposite trend was observed between the available heavy metals and soil microbial biomass during the ryegrass growth period. The bacterial community structure was primarily affected by the available heavy metal concentrations and the soil physicochemical properties. Bacteria with heavy metal resistance and straw decomposition ability dominated the soil after straw addition.

Conclusions

This study showed that straw addition can not only increase the heavy metal absorption of ryegrass but also act as a substrate to change the bacterial community structure. The results of this study provided directions for increasing the ability of plants to extract heavy metals and changing the soil microbial community structure using straw.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Adaptation strategies of three legumes to soil phosphorus availability in steppes of Inner Mongolia Linkage between plant nitrogen preference and rhizosphere effects on soil nitrogen transformation reveals a plant resource adaptive strategies in nitrogen-limited soils Water consumption turning point for Robinia pseudoacacia occurs at its middle stand age The divergent response of fungal and bacterial necromass carbon in soil aggregates under biochar amendment in paddy soil Flooding-driven gravel encroachment reshapes plant community structure and reduces community stability in an arid alluvial fan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1