利用酵母蛋白折叠传感器系统表征indel变异

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Structure Pub Date : 2024-12-19 DOI:10.1016/j.str.2024.11.017
Sven Larsen-Ledet, Søren Lindemose, Aleksandra Panfilova, Sarah Gersing, Caroline H. Suhr, Aitana Victoria Genzor, Heleen Lanters, Sofie V. Nielsen, Kresten Lindorff-Larsen, Jakob R. Winther, Amelie Stein, Rasmus Hartmann-Petersen
{"title":"利用酵母蛋白折叠传感器系统表征indel变异","authors":"Sven Larsen-Ledet, Søren Lindemose, Aleksandra Panfilova, Sarah Gersing, Caroline H. Suhr, Aitana Victoria Genzor, Heleen Lanters, Sofie V. Nielsen, Kresten Lindorff-Larsen, Jakob R. Winther, Amelie Stein, Rasmus Hartmann-Petersen","doi":"10.1016/j.str.2024.11.017","DOIUrl":null,"url":null,"abstract":"Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and <em>de</em>-<em>novo</em>-designed proteins. Applying the folding sensor to a saturated library of single-residue indels in human dihydrofolate reductase (DHFR) revealed that most regions that tolerate indels are confined to internal loops, the termini, and a central α helix. Several indels are temperature sensitive, and folding is rescued upon binding to methotrexate. Rosetta and AlphaFold2 predictions correlate with the observed effects, suggesting that most indels destabilize the native fold and that these computational tools are useful for the classification of indels observed in population sequencing.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"87 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic characterization of indel variants using a yeast-based protein folding sensor\",\"authors\":\"Sven Larsen-Ledet, Søren Lindemose, Aleksandra Panfilova, Sarah Gersing, Caroline H. Suhr, Aitana Victoria Genzor, Heleen Lanters, Sofie V. Nielsen, Kresten Lindorff-Larsen, Jakob R. Winther, Amelie Stein, Rasmus Hartmann-Petersen\",\"doi\":\"10.1016/j.str.2024.11.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and <em>de</em>-<em>novo</em>-designed proteins. Applying the folding sensor to a saturated library of single-residue indels in human dihydrofolate reductase (DHFR) revealed that most regions that tolerate indels are confined to internal loops, the termini, and a central α helix. Several indels are temperature sensitive, and folding is rescued upon binding to methotrexate. Rosetta and AlphaFold2 predictions correlate with the observed effects, suggesting that most indels destabilize the native fold and that these computational tools are useful for the classification of indels observed in population sequencing.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.11.017\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.11.017","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由氨基酸残基插入或缺失(indels)导致的基因变异对进化具有重要影响,而且往往与疾病有关,然而,与错义变异相比,人们对indels的影响知之甚少,也难以预测。我们开发了一种灵敏的蛋白质折叠传感器,它基于环状包被乳清酸磷酸核糖转移酶(CPOP)对酵母中尿嘧啶辅助营养的互补作用。该传感器能报告与疾病相关的错义变体和重新设计的蛋白质的折叠情况。将折叠传感器应用于人类二氢叶酸还原酶(DHFR)中的单残基吲哚饱和库,发现大多数能容忍吲哚的区域都局限于内部环路、末端和中央α螺旋。有几个嵌段对温度很敏感,在与甲氨蝶呤结合后,折叠得到了挽救。Rosetta和AlphaFold2的预测与观察到的效果相关,这表明大多数嵌合体会破坏原生折叠的稳定性,而且这些计算工具对群体测序中观察到的嵌合体分类很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic characterization of indel variants using a yeast-based protein folding sensor
Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins. Applying the folding sensor to a saturated library of single-residue indels in human dihydrofolate reductase (DHFR) revealed that most regions that tolerate indels are confined to internal loops, the termini, and a central α helix. Several indels are temperature sensitive, and folding is rescued upon binding to methotrexate. Rosetta and AlphaFold2 predictions correlate with the observed effects, suggesting that most indels destabilize the native fold and that these computational tools are useful for the classification of indels observed in population sequencing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structure
Structure 生物-生化与分子生物学
CiteScore
8.90
自引率
1.80%
发文量
155
审稿时长
3-8 weeks
期刊介绍: Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome. In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.
期刊最新文献
Structure of a zoonotic H5N1 hemagglutinin reveals a receptor-binding site occupied by an auto-glycan Structural insights into polyisoprenyl-binding glycosyltransferases Computational design and improvement of a broad influenza virus HA stem targeting antibody NSUN6 inhibitor discovery guided by its mRNA substrate bound crystal structure Structural and functional analysis of SAM-dependent N-methyltransferases involved in ovoselenol and ovothiol biosynthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1