Tian Chang, Yonghong Yi, Huiru Jiang, Rongxing Li, Ping Lu, Lin Liu, Lingxiao Wang, Lin Zhao, Simon Zwieback, Jingyi Zhao
{"title":"揭示季节变形与多年冻土活动层厚度的非线性关系","authors":"Tian Chang, Yonghong Yi, Huiru Jiang, Rongxing Li, Ping Lu, Lin Liu, Lingxiao Wang, Lin Zhao, Simon Zwieback, Jingyi Zhao","doi":"10.1038/s41612-024-00866-0","DOIUrl":null,"url":null,"abstract":"Accurate estimate of active layer thickness (ALT) is crucial for understanding permafrost and ecosystem responses to climate change. Interferometric Synthetic Aperture SAR (InSAR) technology can detect active layer freeze-thaw induced surface deformation with high accuracy, facilitating more accurate ALT estimation at the regional scale. Previous studies revealed a positive relationship between ALT and seasonal deformation in poorly drained Arctic soils. However, whether such relationship still holds in arid permafrost regions such as the Qinghai-Tibet Plateau (QTP) remains uncertain. Through synthesizing extensive field observations and remote sensing data, we find an overall negative correlation (r = -0.53, p < 0.01) between ALT and seasonal deformation in QTP, which tends to become more negative with sparser vegetation and drier soils, in contrast to the Arctic. After normalizing the climatic effect on ALT, we observe a decreasing sensitivity of seasonal deformation to active-layer changes with drier soils. Our study reveals a non-linear relationship between ALT and seasonal deformation across different permafrost regions, which helps to inform future development of InSAR-based permafrost applications.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-11"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00866-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Unraveling the non-linear relationship between seasonal deformation and permafrost active layer thickness\",\"authors\":\"Tian Chang, Yonghong Yi, Huiru Jiang, Rongxing Li, Ping Lu, Lin Liu, Lingxiao Wang, Lin Zhao, Simon Zwieback, Jingyi Zhao\",\"doi\":\"10.1038/s41612-024-00866-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate estimate of active layer thickness (ALT) is crucial for understanding permafrost and ecosystem responses to climate change. Interferometric Synthetic Aperture SAR (InSAR) technology can detect active layer freeze-thaw induced surface deformation with high accuracy, facilitating more accurate ALT estimation at the regional scale. Previous studies revealed a positive relationship between ALT and seasonal deformation in poorly drained Arctic soils. However, whether such relationship still holds in arid permafrost regions such as the Qinghai-Tibet Plateau (QTP) remains uncertain. Through synthesizing extensive field observations and remote sensing data, we find an overall negative correlation (r = -0.53, p < 0.01) between ALT and seasonal deformation in QTP, which tends to become more negative with sparser vegetation and drier soils, in contrast to the Arctic. After normalizing the climatic effect on ALT, we observe a decreasing sensitivity of seasonal deformation to active-layer changes with drier soils. Our study reveals a non-linear relationship between ALT and seasonal deformation across different permafrost regions, which helps to inform future development of InSAR-based permafrost applications.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00866-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00866-0\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00866-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
准确估计活动层厚度(ALT)对于了解永久冻土和生态系统对气候变化的响应至关重要。干涉合成孔径SAR (InSAR)技术可以高精度地探测活动层冻融引起的地表变形,从而提高区域尺度上ALT的估计精度。以前的研究表明,在排水不良的北极土壤中,ALT与季节变形呈正相关。然而,在青藏高原等干旱多年冻土区,这种关系是否仍然成立尚不确定。通过综合大量野外观测和遥感资料,我们发现青藏高原ALT与季节变形总体呈负相关(r = -0.53, p < 0.01),与北极相比,植被越少、土壤越干燥,ALT与季节变形呈负相关。将气候对ALT的影响归一化后,我们观察到随着土壤的干燥,季节变形对活动层变化的敏感性逐渐降低。我们的研究揭示了不同冻土区的ALT与季节变形之间的非线性关系,这有助于为基于insar的冻土应用的未来发展提供信息。
Unraveling the non-linear relationship between seasonal deformation and permafrost active layer thickness
Accurate estimate of active layer thickness (ALT) is crucial for understanding permafrost and ecosystem responses to climate change. Interferometric Synthetic Aperture SAR (InSAR) technology can detect active layer freeze-thaw induced surface deformation with high accuracy, facilitating more accurate ALT estimation at the regional scale. Previous studies revealed a positive relationship between ALT and seasonal deformation in poorly drained Arctic soils. However, whether such relationship still holds in arid permafrost regions such as the Qinghai-Tibet Plateau (QTP) remains uncertain. Through synthesizing extensive field observations and remote sensing data, we find an overall negative correlation (r = -0.53, p < 0.01) between ALT and seasonal deformation in QTP, which tends to become more negative with sparser vegetation and drier soils, in contrast to the Arctic. After normalizing the climatic effect on ALT, we observe a decreasing sensitivity of seasonal deformation to active-layer changes with drier soils. Our study reveals a non-linear relationship between ALT and seasonal deformation across different permafrost regions, which helps to inform future development of InSAR-based permafrost applications.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.