{"title":"生物医学研究的纳米建筑学:生物活性应用的后纳米技术材料方法","authors":"Katsuhiko Ariga","doi":"10.1002/anbr.202400136","DOIUrl":null,"url":null,"abstract":"<p>Nanoarchitectonics, as a post-nanotechnology concept, represents a methodology for the construction of functional materials employing atoms, molecules, and nanomaterials as essential components. The overarching objective of nanoarchitectonics is to develop functional systems comprising multiple functional units assembled in a hierarchical manner, as observed in biological systems. Nevertheless, the construction of such functional systems is a challenging endeavor. It would be prudent, therefore, to initially focus on the development of functional materials that interact with the complex functional structures of living organisms. Accordingly, this review article addresses the topic of nanoarchitecture as it pertains to biomedical applications. This article examines the current trends in research and presents examples of studies that support the concept of nanoarchitectonics and its applications in biomedical fields. The examples presented are as follows: i) molecular nanoarchitectonics developments, which are mainly based on molecular design and assembly; ii) material nanoarchitectonics examples, which are mainly based on material design using nanomaterials as components; and iii) biomedical applications with porous materials, which will be summarized under the heading of pore-engineered nanoarchitectonics due to their special structure. Finally, the review provides an overview of these examples and discusses future prospects.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400136","citationCount":"0","resultStr":"{\"title\":\"Nanoarchitectonics for Biomedical Research: Post-Nanotechnology Materials Approach for Bio-Active Application\",\"authors\":\"Katsuhiko Ariga\",\"doi\":\"10.1002/anbr.202400136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoarchitectonics, as a post-nanotechnology concept, represents a methodology for the construction of functional materials employing atoms, molecules, and nanomaterials as essential components. The overarching objective of nanoarchitectonics is to develop functional systems comprising multiple functional units assembled in a hierarchical manner, as observed in biological systems. Nevertheless, the construction of such functional systems is a challenging endeavor. It would be prudent, therefore, to initially focus on the development of functional materials that interact with the complex functional structures of living organisms. Accordingly, this review article addresses the topic of nanoarchitecture as it pertains to biomedical applications. This article examines the current trends in research and presents examples of studies that support the concept of nanoarchitectonics and its applications in biomedical fields. The examples presented are as follows: i) molecular nanoarchitectonics developments, which are mainly based on molecular design and assembly; ii) material nanoarchitectonics examples, which are mainly based on material design using nanomaterials as components; and iii) biomedical applications with porous materials, which will be summarized under the heading of pore-engineered nanoarchitectonics due to their special structure. Finally, the review provides an overview of these examples and discusses future prospects.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 12\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400136\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Nanoarchitectonics for Biomedical Research: Post-Nanotechnology Materials Approach for Bio-Active Application
Nanoarchitectonics, as a post-nanotechnology concept, represents a methodology for the construction of functional materials employing atoms, molecules, and nanomaterials as essential components. The overarching objective of nanoarchitectonics is to develop functional systems comprising multiple functional units assembled in a hierarchical manner, as observed in biological systems. Nevertheless, the construction of such functional systems is a challenging endeavor. It would be prudent, therefore, to initially focus on the development of functional materials that interact with the complex functional structures of living organisms. Accordingly, this review article addresses the topic of nanoarchitecture as it pertains to biomedical applications. This article examines the current trends in research and presents examples of studies that support the concept of nanoarchitectonics and its applications in biomedical fields. The examples presented are as follows: i) molecular nanoarchitectonics developments, which are mainly based on molecular design and assembly; ii) material nanoarchitectonics examples, which are mainly based on material design using nanomaterials as components; and iii) biomedical applications with porous materials, which will be summarized under the heading of pore-engineered nanoarchitectonics due to their special structure. Finally, the review provides an overview of these examples and discusses future prospects.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.