{"title":"柔性丝网印刷桑皮纸基多铁复合材料微波吸收屏蔽的制备与仿真","authors":"Vaishnavi Khade, Avanish Babu Thirumalasetty, Madhuri Wuppulluri","doi":"10.1002/adem.202401304","DOIUrl":null,"url":null,"abstract":"<p>Flexible paper-based electronics are trending currently for its biodegradability, light weight, and compactness. A flexible film with 10, 20, 30 wt% of BCST-CNF multiferroic filler is systematically investigated by initially simulating electromagnetic interference (EMI) shielding parameters using CST Studio Suite Software. Nicolson–Ross wire algorithm is used to estimate the EM parameters of PVDF/(Ba<sub>0.945</sub>Ca<sub>0.055</sub>Sn<sub>0.07</sub>Ti<sub>0.93</sub>)O<sub>3</sub>–Co<sub>0.9</sub>Ni<sub>0.1</sub>Fe<sub>2</sub>O<sub>4</sub>)(BCST-CNF) (PBC) films. By adaption of PBC on mulberry paper, the shielding effect of the screen-printed EMI shielding material with 30 wt% of multiferroic filler reveals over 65.24 dB, which is the highest value of shielding effect for X-band compared to other tested films. Moreover, it shows enhanced microwave absorption of 63.48 dB. This study opens up an effective avenue for designing strong microwave absorption materials to satisfy the increasingly demanding requirements of advanced and integrated electronics.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Simulation of Flexible Screen-Printed Mulberry Paper-Based Multiferroic Composites as Microwave Absorption Shields\",\"authors\":\"Vaishnavi Khade, Avanish Babu Thirumalasetty, Madhuri Wuppulluri\",\"doi\":\"10.1002/adem.202401304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible paper-based electronics are trending currently for its biodegradability, light weight, and compactness. A flexible film with 10, 20, 30 wt% of BCST-CNF multiferroic filler is systematically investigated by initially simulating electromagnetic interference (EMI) shielding parameters using CST Studio Suite Software. Nicolson–Ross wire algorithm is used to estimate the EM parameters of PVDF/(Ba<sub>0.945</sub>Ca<sub>0.055</sub>Sn<sub>0.07</sub>Ti<sub>0.93</sub>)O<sub>3</sub>–Co<sub>0.9</sub>Ni<sub>0.1</sub>Fe<sub>2</sub>O<sub>4</sub>)(BCST-CNF) (PBC) films. By adaption of PBC on mulberry paper, the shielding effect of the screen-printed EMI shielding material with 30 wt% of multiferroic filler reveals over 65.24 dB, which is the highest value of shielding effect for X-band compared to other tested films. Moreover, it shows enhanced microwave absorption of 63.48 dB. This study opens up an effective avenue for designing strong microwave absorption materials to satisfy the increasingly demanding requirements of advanced and integrated electronics.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 24\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401304\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401304","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
柔性纸基电子产品因其可生物降解性、重量轻和紧凑性而成为当前的趋势。采用CST Studio Suite软件,初步模拟电磁干扰(EMI)屏蔽参数,系统地研究了含有10、20、30 wt% BCST-CNF多铁填料的柔性薄膜。采用Nicolson-Ross线算法估计PVDF/(Ba0.945Ca0.055Sn0.07Ti0.93) O3-Co0.9Ni0.1Fe2O4)(BCST-CNF) (PBC)薄膜的EM参数。经在桑纸上涂布PBC,加30%多铁填料的丝网印刷EMI屏蔽材料对x波段的屏蔽效果达到65.24 dB以上,是其他薄膜中屏蔽效果最高的。微波吸收增强63.48 dB。本研究为强微波吸收材料的设计开辟了一条有效的途径,以满足日益增长的先进和集成电子产品的要求。
Fabrication and Simulation of Flexible Screen-Printed Mulberry Paper-Based Multiferroic Composites as Microwave Absorption Shields
Flexible paper-based electronics are trending currently for its biodegradability, light weight, and compactness. A flexible film with 10, 20, 30 wt% of BCST-CNF multiferroic filler is systematically investigated by initially simulating electromagnetic interference (EMI) shielding parameters using CST Studio Suite Software. Nicolson–Ross wire algorithm is used to estimate the EM parameters of PVDF/(Ba0.945Ca0.055Sn0.07Ti0.93)O3–Co0.9Ni0.1Fe2O4)(BCST-CNF) (PBC) films. By adaption of PBC on mulberry paper, the shielding effect of the screen-printed EMI shielding material with 30 wt% of multiferroic filler reveals over 65.24 dB, which is the highest value of shielding effect for X-band compared to other tested films. Moreover, it shows enhanced microwave absorption of 63.48 dB. This study opens up an effective avenue for designing strong microwave absorption materials to satisfy the increasingly demanding requirements of advanced and integrated electronics.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.