Fariba Malekpour Galogahi, Simon Strachan, Ajeet Singh Yadav, Helen Stratton, Nam-Trung Nguyen
{"title":"用于数字环介导等温扩增的液体珠中dna的微流控封装","authors":"Fariba Malekpour Galogahi, Simon Strachan, Ajeet Singh Yadav, Helen Stratton, Nam-Trung Nguyen","doi":"10.1002/anbr.2024700121","DOIUrl":null,"url":null,"abstract":"<p><b>Digital Microfluidics</b>\n </p><p>In article 2400044, Nam-Trung Nguyen and co-workers introduce liquid beads, liquid sample encapsulated in a solid shell, for sample partitioning of digital loop-mediated isothermal amplification (dLAMP). Accurate and reproducible the quantitative detection of a gene cluster of leaf scald disease was conducted using this dLAMP approach. The results demonstrate the robust performance of this technique as compared to droplet-based and conventional quantitative approaches.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.2024700121","citationCount":"0","resultStr":"{\"title\":\"Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification\",\"authors\":\"Fariba Malekpour Galogahi, Simon Strachan, Ajeet Singh Yadav, Helen Stratton, Nam-Trung Nguyen\",\"doi\":\"10.1002/anbr.2024700121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Digital Microfluidics</b>\\n </p><p>In article 2400044, Nam-Trung Nguyen and co-workers introduce liquid beads, liquid sample encapsulated in a solid shell, for sample partitioning of digital loop-mediated isothermal amplification (dLAMP). Accurate and reproducible the quantitative detection of a gene cluster of leaf scald disease was conducted using this dLAMP approach. The results demonstrate the robust performance of this technique as compared to droplet-based and conventional quantitative approaches.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 12\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.2024700121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.2024700121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.2024700121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification
Digital Microfluidics
In article 2400044, Nam-Trung Nguyen and co-workers introduce liquid beads, liquid sample encapsulated in a solid shell, for sample partitioning of digital loop-mediated isothermal amplification (dLAMP). Accurate and reproducible the quantitative detection of a gene cluster of leaf scald disease was conducted using this dLAMP approach. The results demonstrate the robust performance of this technique as compared to droplet-based and conventional quantitative approaches.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.