用于数字环介导等温扩增的液体珠中dna的微流控封装

IF 4 Q2 ENGINEERING, BIOMEDICAL Advanced Nanobiomed Research Pub Date : 2024-12-11 DOI:10.1002/anbr.2024700121
Fariba Malekpour Galogahi, Simon Strachan, Ajeet Singh Yadav, Helen Stratton, Nam-Trung Nguyen
{"title":"用于数字环介导等温扩增的液体珠中dna的微流控封装","authors":"Fariba Malekpour Galogahi,&nbsp;Simon Strachan,&nbsp;Ajeet Singh Yadav,&nbsp;Helen Stratton,&nbsp;Nam-Trung Nguyen","doi":"10.1002/anbr.2024700121","DOIUrl":null,"url":null,"abstract":"<p><b>Digital Microfluidics</b>\n </p><p>In article 2400044, Nam-Trung Nguyen and co-workers introduce liquid beads, liquid sample encapsulated in a solid shell, for sample partitioning of digital loop-mediated isothermal amplification (dLAMP). Accurate and reproducible the quantitative detection of a gene cluster of leaf scald disease was conducted using this dLAMP approach. The results demonstrate the robust performance of this technique as compared to droplet-based and conventional quantitative approaches.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.2024700121","citationCount":"0","resultStr":"{\"title\":\"Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification\",\"authors\":\"Fariba Malekpour Galogahi,&nbsp;Simon Strachan,&nbsp;Ajeet Singh Yadav,&nbsp;Helen Stratton,&nbsp;Nam-Trung Nguyen\",\"doi\":\"10.1002/anbr.2024700121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Digital Microfluidics</b>\\n </p><p>In article 2400044, Nam-Trung Nguyen and co-workers introduce liquid beads, liquid sample encapsulated in a solid shell, for sample partitioning of digital loop-mediated isothermal amplification (dLAMP). Accurate and reproducible the quantitative detection of a gene cluster of leaf scald disease was conducted using this dLAMP approach. The results demonstrate the robust performance of this technique as compared to droplet-based and conventional quantitative approaches.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 12\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.2024700121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.2024700121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.2024700121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在第2400044篇文章中,Nam-Trung Nguyen及其同事介绍了液体微球,即包裹在固体壳中的液体样品,用于数字环介导等温扩增(dLAMP)的样品划分。利用dLAMP方法对叶片烫伤病的一个基因簇进行了准确、重复性好的定量检测。结果表明,与基于液滴和传统定量方法相比,该技术具有强大的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification

Digital Microfluidics

In article 2400044, Nam-Trung Nguyen and co-workers introduce liquid beads, liquid sample encapsulated in a solid shell, for sample partitioning of digital loop-mediated isothermal amplification (dLAMP). Accurate and reproducible the quantitative detection of a gene cluster of leaf scald disease was conducted using this dLAMP approach. The results demonstrate the robust performance of this technique as compared to droplet-based and conventional quantitative approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
期刊最新文献
Masthead Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification Masthead Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor Nanoarchitectonics for Biomedical Research: Post-Nanotechnology Materials Approach for Bio-Active Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1